The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 941 – 960 of 2283

Showing per page

A regularity result for a convex functional and bounds for the singular set

Bruno De Maria (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we prove a regularity result for local minimizers of functionals of the Calculus of Variations of the type Ω f ( x , D u ) d x where Ω is a bounded open set in n , u∈ W loc 1 , p (Ω; N ), p> 1, n≥ 2 and N≥ 1. We use the technique of difference quotient without the usual assumption on the growth of the second derivatives of the function f. We apply this result to give a bound on the Hausdorff dimension of the singular set of minimizers.

A regularity result for p-harmonic equations with measure data.

Menita Carozza, Antonia Passarelli di Napoli (2004)

Collectanea Mathematica

We examine the p-harmonic equation div |grad u|(p-2). grad u = mu, where mu is a bounded Radon measure. We determine a range of p's for which solutions to the equation verify an a priori estimate. For such p's we also prove a higher integrability result.

A remark about a Galerkin method

Gerhard Ströhmer (1996)

Banach Center Publications

It is shown that the approximating equations whose existence is required in the author's previous work on partially regular weak solutions can be constructed without any additional assumption about the equation itself. This leads to a variation of a Galerkin method.

Currently displaying 941 – 960 of 2283