The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
615
We report on results we recently obtained in Hebey and Thizy [11, 12] for critical stationary Kirchhoff systems in closed manifolds. Let be a closed -manifold, . The critical Kirchhoff systems we consider are written asfor all , where is the Laplace-Beltrami operator, is a -map from into the space of symmetric matrices with real entries, the ’s are the components of , , is the Euclidean norm of , is the critical Sobolev exponent, and we require that in for all . We...
In this paper, we review some of our recent results in the study of the dynamics of
interacting Bose gases in the Gross-Pitaevskii (GP) limit. Our investigations focus on the
well-posedness of the associated Cauchy problem for the infinite particle system described
by the GP hierarchy.
This paper focuses on the automatic recognition of map projection, its inverse and re-projection. Our analysis leads to the unconstrained optimization solved by the hybrid BFGS nonlinear least squares technique. The objective function is represented by the squared sum of the residuals. For the map re-projection the partial differential equations of the inverse transformation are derived. They can be applied to any map projection. Illustrative examples of the stereographic and globular Nicolosi projections...
We consider perturbations of a stratified medium , where the operator studied is . The function is a perturbation of , which is constant for sufficiently large and satisfies some other conditions. Under certain restrictions on the perturbation , we give results on the Fourier integral operator structure of the scattering matrix. Moreover, we show that we can recover the asymptotic expansion at infinity of from knowledge of and the singularities of the scattering matrix at fixed energy....
We define the Bloch spectrum of a quantum graph to be the map that assigns to each element in the deRham cohomology the spectrum of an associated magnetic Schrödinger operator. We show that the Bloch spectrum determines the Albanese torus, the block structure and the planarity of the graph. It determines a geometric dual of a planar graph. This enables us to show that the Bloch spectrum indentifies and completely determines planar -connected quantum graphs.
The problem of recovering the singularities of a potential from backscattering data is studied. Let be a smooth precompact domain in which is convex (or normally accessible). Suppose with and conormal to the boundary of and supported inside then if the backscattering data of and are equal up to smoothing, we show that is smooth.
In this paper, we consider a 2nd order semilinear parabolic initial boundary value problem (IBVP) on a bounded domain , with nonstandard boundary conditions (BCs). More precisely, at some part of the boundary we impose a Neumann BC containing an unknown additive space-constant , accompanied with a nonlocal (integral) Dirichlet side condition. We design a numerical scheme for the approximation of a weak solution to the IBVP and derive error estimates for the approximation of the solution and...
The model order reduction methodology of reduced basis (RB)
techniques offers efficient treatment of parametrized partial differential
equations (P2DEs) by providing both approximate solution procedures and
efficient error estimates.
RB-methods have so far mainly been applied to finite element schemes
for elliptic and parabolic problems. In the current study
we extend the methodology to general linear evolution schemes such as finite volume schemes for parabolic and hyperbolic evolution equations....
Currently displaying 81 –
100 of
615