Stability for semilinear parabolic equations with decaying potentials in Rn and dynamical approach to the existence of ground states
The stabilization of solutions to an abstract differential equation is investigated. The initial value problem is considered in the form of an integral equation. The equation is solved by means of the Banach contraction mapping theorem or the Schauder fixed point theorem in the space of functions decreasing to zero at an appropriate rate. Stable manifolds for singular perturbation problems are compared with each other. A possible application is illustrated on an initial-boundary-value problem for...
We establish the stability in the energy space for sums of solitons of the one-dimensional Gross-Pitaevskii equation when their speeds are mutually distinct and distinct from zero, and when the solitons are initially well-separated and spatially ordered according to their speeds.
We consider numerical approximations of stationary incompressible Navier-Stokes flows in 3D exterior domains, with nonzero velocity at infinity. It is shown that a P1-P1 stabilized finite element method proposed by C. Rebollo: A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math. 79 (1998), 283–319, is stable when applied to a Navier-Stokes flow in a truncated exterior domain with a pointwise boundary condition on the artificial boundary....
The paper examines the initial value problem for the Navier-Stokes system of viscous incompressible fluids in the three-dimensional space. We prove stability of regular solutions which tend to constant flows sufficiently fast. We show that a perturbation of a regular solution is bounded in for k ∈ ℕ. The result is obtained under the assumption of smallness of the L₂-norm of the perturbing initial data. We do not assume smallness of the -norm of the perturbing initial data or smallness of the...
We consider a generalized 1-D von Foerster equation. We present two discretization methods for the initial value problem and study stability of finite difference schemes on regular meshes.
In this paper we study the stability of transonic strong shock solutions of the steady state one-dimensional unipolar hydrodynamic model for semiconductors in the isentropic case. The approach is based on the construction of a pseudo-local symmetrizer and on the paradifferential calculus with parameters, which combines the work of Bony-Meyer and the introduction of a large parameter.