Stability of Lewis and Vogel's result.
We prove the linear and non-linear stability of oscillating Ekman boundary layers for rotating fluids in the so-called ill-prepared case under a spectral hypothesis. Here, we deal with the case where the viscosity and the Rossby number are both equal to . This study generalizes the study of [23] where a smallness condition was imposed and the study of [26] where the well-prepared case was treated.
This article investigates the long-time behaviour of parabolic scalar conservation laws of the type , where and the flux is periodic in . More specifically, we consider the case when the initial data is an disturbance of a stationary periodic solution. We show, under polynomial growth assumptions on the flux, that the difference between u and the stationary solution behaves in norm like a self-similar profile for large times. The proof uses a time and space change of variables which is...
Partial differential equations endowed with a Hamiltonian structure, like the Korteweg–de Vries equation and many other more or less classical models, are known to admit rich families of periodic travelling waves. The stability theory for these waves is still in its infancy though. The issue has been tackled by various means. Of course, it is always possible to address stability from the spectral point of view. However, the link with nonlinear stability - in fact, orbital stability, since we are...