Displaying 1101 – 1120 of 1682

Showing per page

Stability of solutions for an abstract Dirichlet problem

Marek Galewski (2004)

Annales Polonici Mathematici

We consider continuous dependence of solutions on the right hand side for a semilinear operator equation Lx = ∇G(x), where L: D(L) ⊂ Y → Y (Y a Hilbert space) is self-adjoint and positive definite and G:Y → Y is a convex functional with superquadratic growth. As applications we derive some stability results and dependence on a functional parameter for a fourth order Dirichlet problem. Applications to P.D.E. are also given.

Stability of the inverse problem in potential scattering at fixed energy

Plamen Stefanov (1990)

Annales de l'institut Fourier

We prove an estimate of the kind q 1 - q 2 L C ϕ ( A q 1 - A q 2 R , 3 / 2 - 1 / 2 ) , where A q i ( ω , θ ) , i = 1 , 2 is the scattering amplitude related to the compactly supported potential q i ( x ) at a fixed energy level k = const., ϕ ( t ) = ( - ln t ) - δ , 0 < δ < 1 and · R , 3 / 2 - 1 / 2 is a suitably defined norm.

Stability of the Pohožaev obstrucion in dimension 3

Olivier Druet, Paul Laurain (2010)

Journal of the European Mathematical Society

We investigate problems connected to the stability of the well-known Pohoˇzaev obstruction. We generalize results which were obtained in the minimizing setting by Brezis and Nirenberg [2] and more recently in the radial situation by Brezis and Willem [3].

Stability of unique pseudo almost periodic solutions with measure

Boulbaba Ghanmi, Mohsen Miraoui (2020)

Applications of Mathematics

By means of the fixed-point methods and the properties of the μ -pseudo almost periodic functions, we prove the existence, uniqueness, and exponential stability of the μ -pseudo almost periodic solutions for some models of recurrent neural networks with mixed delays and time-varying coefficients, where μ is a positive measure. A numerical example is given to illustrate our main results.

Stability of vibrations for some Kirchhoff equation with dissipation

Prasanta Kumar Nandi, Ganesh Chandra Gorain, Samarjit Kar (2014)

Applications of Mathematics

In this paper we consider the boundary value problem of some nonlinear Kirchhoff-type equation with dissipation. We also estimate the total energy of the system over any time interval [ 0 , T ] with a tolerance level γ . The amplitude of such vibrations is bounded subject to some restrictions on the uncertain disturbing force f . After constructing suitable Lyapunov functional, uniform decay of solutions is established by means of an exponential energy decay estimate when the uncertain disturbances are insignificant....

Currently displaying 1101 – 1120 of 1682