Displaying 1301 – 1320 of 2162

Showing per page

On the fusion problem for degenerate elliptic equations II

Stephen M. Buckley, Pekka Koskela (1999)

Commentationes Mathematicae Universitatis Carolinae

Let F be a relatively closed subset of a Euclidean domain Ω . We investigate when solutions u to certain elliptic equations on Ω F are restrictions of solutions on all of Ω . Specifically, we show that if F is not too large, and u has a suitable decay rate near F , then u can be so extended.

On the G -convergence of Morrey operators

Maria Rosaria Formica, Carlo Sbordone (2003)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Following Morrey [14] we associate to any measurable symmetric 2 × 2 matrix valued function A x such that ξ 2 K A x ξ , ξ K ξ 2 a.e. x Ω , ξ R 2 , Ω R 2 ...

On the generic spectrum of a riemannian cover

Steven Zelditch (1990)

Annales de l'institut Fourier

Let M be a compact manifold let G be a finite group acting freely on M , and let G be the (Fréchet) space of G -invariant metric on M . A natural conjecture is that, for a generic metric in G , all eigenspaces of the Laplacian are irreducible (as orthogonal representations of G ). In physics terminology, no “accidental degeneracies” occur generically. We will prove this conjecture when dim M dim V for all irreducibles V of G . As an application, we construct isospectral manifolds with simple eigenvalue...

On the genesis of the concept of covariant differentiation

Luca Dell’ Aglio (1996)

Revue d'histoire des mathématiques

The purpose of this paper is to reconsider the genesis of the concept of covariant differentiation, which is interpreted as arising out of two traditions running through 19th-century research work. While the first tradition, of an algebraic nature, was responsible for the “algorithmic” emergence of the concept, the second, analytical in character, was essentially concerned with the import of covariant differentiation as a broader kind of differentiation. The methodological contrast that these two...

On the Ginzburg-Landau and related equations

Yu N. Ovchinnikov, Israel Michael Sigal (1997/1998)

Séminaire Équations aux dérivées partielles

We describe qualitative behaviour of solutions of the Gross-Pitaevskii equation in 2D in terms of motion of vortices and radiation. To this end we introduce the notion of the intervortex energy. We develop a rather general adiabatic theory of motion of well separated vortices and present the method of effective action which gives a fairly straightforward justification of this theory. Finally we mention briefly two special situations where we are able to obtain rather detailed picture of the vortex...

Currently displaying 1301 – 1320 of 2162