On the global Cauchy problem for some non linear Schrödinger equations
We study the generalized Oldroyd model with viscosity depending on the shear stress behaving like (p > 6/5), regularized by a nonlinear stress diffusion. Using the Lipschitz truncation method we prove global existence of a weak solution to the corresponding system of partial differential equations.
This paper deals with the global well-posedness of the D axisymmetric Euler equations for initial data lying in critical Besov spaces . In this case the BKM criterion is not known to be valid and to circumvent this difficulty we use a new decomposition of the vorticity .
The Muskat problem models the dynamics of the interface between two incompressible immiscible fluids with different constant densities. In this work we prove three results. First we prove an maximum principle, in the form of a new “log” conservation law which is satisfied by the equation (1) for the interface. Our second result is a proof of global existence for unique strong solutions if the initial data is smaller than an explicitly computable constant, for instance . Previous results of this...
We consider the motion of a viscous compressible heat conducting fluid in ℝ³ bounded by a free surface which is under constant exterior pressure. Assuming that the initial velocity is sufficiently small, the initial density and the initial temperature are close to constants, the external force, the heat sources and the heat flow vanish, we prove the existence of global-in-time solutions which satisfy, at any moment of time, the properties prescribed at the initial moment.
Consider a stochastic heat equation ∂tu=κ ∂xx2u+σ(u)ẇ for a space–time white noise ẇ and a constant κ>0. Under some suitable conditions on the initial function u0 and σ, we show that the quantities lim sup t→∞t−1sup x∈Rln El(|ut(x)|2) and lim sup t→∞t−1ln E(sup x∈R|ut(x)|2) are equal, as well as bounded away from zero and infinity by explicit multiples of 1/κ. Our proof works by demonstrating quantitatively that the peaks of the stochastic process x↦ut(x) are highly concentrated...
We study the -dimensional Boussinesq system with dissipation and diffusion generalized in terms of fractional Laplacians. In particular, we show that given the critical dissipation, a solution pair remains smooth for all time even with zero diffusivity. In the supercritical case, we obtain component reduction results of regularity criteria and smallness conditions for the global regularity in dimensions two and three.
We prove that the one-dimensional Euler–Poisson system driven by the Poisson forcing together with the usual -law pressure, , admits global solutions for a large class of initial data. Thus, the Poisson forcing regularizes the generic finite-time breakdown in the -system. Global regularity is shown to depend on whether or not the initial configuration of the Riemann...
This article surveys results on the global surjectivity of linear partial differential operators with constant coefficients on the space of real analytic functions. Some new results are also included.
In this paper we prove the global well-posedness of the two-dimensional Boussinesq system with zero viscosity for rough initial data.
We give explicit formulas for Hadamard's coefficients in terms of the tau-function of the Korteweg-de Vries hierarchy. We show that some of the basic properties of these coefficients can be easily derived from these formulas.