The search session has expired. Please query the service again.

Displaying 1321 – 1340 of 1688

Showing per page

Study of Anisotropic MHD system in Anisotropic Sobolev spaces

Jamel Ben Ameur, Ridha Selmi (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

Three-dimensional anisotropic magneto-hydrodynamical system is investigated in the whole space 3 . Existence and uniqueness results are proved in the anisotropic Sobolev space H 0 , s for s > 1 / 2 . Asymptotic behavior of the solution when the Rossby number goes to zero is studied. The proofs, where the incompressibility condition is crucial, use the energy method, an appropriate dyadic decomposition of the frequency space, product laws in anisotropic Sobolev spaces and Strichartz-type estimates.

Sturm-Liouville systems are Riesz-spectral systems

Cédric Delattre, Denis Dochain, Joseph Winkin (2003)

International Journal of Applied Mathematics and Computer Science

The class of Sturm-Liouville systems is defined. It appears to be a subclass of Riesz-spectral systems, since it is shown that the negative of a Sturm-Liouville operator is a Riesz-spectral operator on L^2(a,b) and the infinitesimal generator of a C_0-semigroup of bounded linear operators.

Su alcune questioni connesse con il problema di derivata obliqua regolare per le funzioni armoniche

Enrico Magenes (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

— Vengono riconsiderati il problema di derivata obliqua regolare e quello misto di Dirichlet-derivata obliqua regolare per le funzioni armoniche in un dominio di R 3 e le questioni di completezza hilbertiana connesse già studiate in un precedente lavoro e viene data una nuova dimostrazione di un teorema di unicità.

Su alcune successioni di soluzioni positive di problemi ellittici con esponente critico

Donato Passaseo (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

— Si presentano alcuni risultati di esistenza e molteplicità di soluzioni positive per l'equazione Δ u + u 2 * - 1 = 0 in H 0 1 , 2 Ω , dove Ω è un aperto limitato di R n con n 3 e 2 * = 2 n / n 2 . Si mostra che opportune perturbazioni di Ω comportano l'esistenza di soluzioni positive, che convergono a zero quando la capacità delle perturbazioni tende a zero. In particolare, si ottengono risultati di esistenza e molteplicità di soluzioni positive in alcuni aperti limitati e contrattili, non necessariamente simmetrici.

Su un teorema di unicità per l'equazione semilineare del calore in un dominio illimitato

Piero Bassanini (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A periodic BVP for a semilinear elliptic-parabolic equation in an unbounded domain Ω contained in a half-space of n is considered, with Dirichlet boundary conditions on the finite part of Ω . A theorem of uniqueness of periodic solutions is proved by showing that a suitable function of the "energy" E ( x ) is subharmonic in Ω and satisfies a Phragmèn-Lindelöf growth condition at infinity.

Currently displaying 1321 – 1340 of 1688