High-degree precision decomposition method for an evolution problem.
A nonlinear elliptic partial differential equation with homogeneous Dirichlet boundary conditions is examined. The problem describes for instance a stationary heat conduction in nonlinear inhomogeneous and anisotropic media. For finite elements of degree we prove the optimal rates of convergence in the -norm and in the -norm provided the true solution is sufficiently smooth. Considerations are restricted to domains with polyhedral boundaries. Numerical integration is not taken into account....
There is a long history of studying nonlinear boundary value problems for elliptic differential equations in a domain with sufficiently smooth boundary. In this paper, we show that the gradient of the solution of such a problem is continuous when a directional derivative is prescribed on the boundary of a Lipschitz domain for a large class of nonlinear equations under weak conditions on the data of the problem. The class of equations includes linear equations with fairly rough coefficients as well...
The main goal of the present work is a generalization of the ideas, constructions and results from the first and second-order situation, studied in [63], [64] to that of an arbitrary finite-order one. Moreover, the investigation extends the ideas of [65] from the one-dimensional base X corresponding to O.D.E.
This paper deals with the numerical study of a nonlinear, strongly anisotropic heat equation. The use of standard schemes in this situation leads to poor results, due to the high anisotropy. An Asymptotic-Preserving method is introduced in this paper, which is second-order accurate in both, temporal and spacial variables. The discretization in time is done using an L-stable Runge−Kutta scheme. The convergence of the method is shown to be independent of the anisotropy parameter , and this for fixed...