On the range of nonlinear operators with linear asymptotes which are not invertible
We characterize the range of some spaces of functions by the Fourier transform associated with the spherical mean operator R and we give a new description of the Schwartz spaces. Next, we prove a Paley-Wiener and a Paley-Wiener-Schawrtz theorems.
We characterize the range of some spaces of functions by the Fourier transform associated with the Riemann-Liouville operator and we give a new description of the Schwartz spaces. Next, we prove a Paley-Wiener and a Paley-Wiener-Schwartz theorems.
Based on estimates for the KdV equation in analytic Gevrey classes, a spectral collocation approximation of the KdV equation is proved to converge exponentially fast.
We study the real analyticity of the scattering operator for the Hartree equation . To this end, we exploit interior and exterior cut-off in time and space, together with a compactness argument to overcome difficulties which arise from absence of good properties as for the Klein-Gordon equation, such as the finite speed of propagation and ideal time decay estimate. Additionally, the method in this paper allows us to simplify the proof of analyticity of the scattering operator for the nonlinear...
We consider local minimizers of variational integrals like or its degenerate variant with exponents which do not fall completely in the category studied in Bildhauer M., Fuchs M., Calc. Var. 16 (2003), 177–186. We prove interior - respectively -regularity of under the condition that . For decomposable variational integrals of arbitrary order a similar result is established by the way extending the work Bildhauer M., Fuchs M., Ann. Acad. Sci. Fenn. Math. 31 (2006), 349–362.