The search session has expired. Please query the service again.
Displaying 61 –
80 of
486
This paper is concerned with the Dirichlet-Cauchy problem for second order parabolic equations in domains with edges. The asymptotic behaviour of the solution near the edge is studied.
If Ω is a Lip(1,1/2) domain, μ a doubling measure on , i = 0,1, are two parabolic-type operators with coefficients bounded and measurable, 2 ≤ q < ∞, then the associated measures , have the property that implies is absolutely continuous with respect to whenever a certain Carleson-type condition holds on the difference function of the coefficients of and . Also implies whenever both measures are center-doubling measures. This is B. Dahlberg’s result for elliptic measures extended...
In this paper, we consider the Swift–Hohenberg equation with perturbed boundary conditions. We do not a priori know the eigenfunctions for the linearized problem since the symmetry of the problem is broken by perturbation. We show that how the neutral stability curves change and, as a result, how the bifurcation diagrams change by the perturbation of the boundary conditions.
While alternans in a single cardiac cell appears through a simple
period-doubling bifurcation, in extended tissue the exact nature
of the bifurcation is unclear. In particular, the phase of
alternans can exhibit wave-like spatial dependence, either
stationary or travelling, which is known as discordant
alternans. We study these phenomena in simple cardiac models
through a modulation equation proposed by Echebarria-Karma. As
shown in our previous paper, the zero solution of their equation
may lose...
We consider parameter-dependent cocycles generated by nonautonomous difference equations. One of them is a discrete-time cardiac conduction model. For this system with a control variable a cocycle formulation is presented. We state a theorem about upper Hausdorff dimension estimates for cocycle attractors which includes some regulating function. We also consider the existence of invariant measures for cocycle systems using some elements of Perron-Frobenius theory and discuss the bifurcation of parameter-dependent...
We discuss the effect of time delay on blow-up of solutions to initial-boundary value problems for nonlinear reaction-diffusion equations. Firstly, two examples are given, which indicate that the delay can both induce and prevent the blow-up of solutions. Then we show that adding a new term with delay may not change the blow-up character of solutions.
In this paper we consider general second order, symmetric and strongly elliptic parabolic systems with real valued and constant coefficients in the setting of a class of time-varying, non-smooth infinite cylindersΩ = {(x0,x,t) ∈ R x Rn-1 x R: x0 > A(x,t)}.We prove solvability of Dirichlet, Neumann as well as regularity type problems with data in Lp and Lp1,1/2 (the parabolic Sobolev space having tangential (spatial) gradients and half a time derivative in Lp) for p ∈ (2 − ε, 2 + ε) assuming...
Currently displaying 61 –
80 of
486