Displaying 341 – 360 of 445

Showing per page

Recent Mathematical Results on Combustion in Hydraulically Resistant Porous Media

P. Gordon (2010)

Mathematical Modelling of Natural Phenomena

Gaseous detonation is a phenomenon with very complicated dynamics which has been studied extensively by physicists, mathematicians and engineers for many years. Despite many efforts the problem is far from a complete resolution. Recently the theory of subsonic detonation that occurs in highly resistant porous media was proposed in [4]. This theory provides a model which is realistic, rich and suitable for a mathematical study. In particular, the model is capable of describing the transition from...

Regularity of solutions of the fractional porous medium flow

Luis Caffarelli, Fernando Soria, Juan Luis Vázquez (2013)

Journal of the European Mathematical Society

We study a porous medium equation with nonlocal diffusion effects given by an inverse fractional Laplacian operator. The precise model is u t = · ( u ( - Δ ) - s u ) , 0 < s < 1 . The problem is posed in { x n , t } with nonnegative initial data u ( x , 0 ) that are integrable and decay at infinity. A previous paper has established the existence of mass-preserving, nonnegative weak solutions satisfying energy estimates and finite propagation. As main results we establish the boundedness and C α regularity of such weak solutions. Finally, we extend the existence...

Regularity of stable solutions of p -Laplace equations through geometric Sobolev type inequalities

Daniele Castorina, Manel Sanchón (2015)

Journal of the European Mathematical Society

We prove a Sobolev and a Morrey type inequality involving the mean curvature and the tangential gradient with respect to the level sets of the function that appears in the inequalities. Then, as an application, we establish a priori estimates for semistable solutions of Δ p u = g ( u ) in a smooth bounded domain Ω n . In particular, we obtain new L r and W 1 , r bounds for the extremal solution u when the domain is strictly convex. More precisely, we prove that u L ( Ω ) if n p + 2 and u L n p n - p - 2 ( Ω ) W 0 1 , p ( Ω ) if n > p + 2 .

Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshes

Gerd Kunert (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Singularly perturbed problems often yield solutions with strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation. To this end we present a new robust error estimator for a singularly perturbed reaction–diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite element...

Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshes

Gerd Kunert (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Singularly perturbed problems often yield solutions with strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation. To this end we present a new robust error estimator for a singularly perturbed reaction-diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite element...

Self-similar solutions in reaction-diffusion systems

Joanna Rencławowicz (2003)

Banach Center Publications

In this paper we examine self-similar solutions to the system u i t - d i Δ u i = k = 1 m u k p k i , i = 1,…,m, x N , t > 0, u i ( 0 , x ) = u 0 i ( x ) , i = 1,…,m, x N , where m > 1 and p k i > 0 , to describe asymptotics near the blow up point.

Simulation of electrophysiological waves with an unstructured finite element method

Yves Bourgault, Marc Ethier, Victor G. LeBlanc (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Bidomain models are commonly used for studying and simulating electrophysiological waves in the cardiac tissue. Most of the time, the associated PDEs are solved using explicit finite difference methods on structured grids. We propose an implicit finite element method using unstructured grids for an anisotropic bidomain model. The impact and numerical requirements of unstructured grid methods is investigated using a test case with re-entrant waves.

Simulation of Electrophysiological Waves with an Unstructured Finite Element Method

Yves Bourgault, Marc Ethier, Victor G. LeBlanc (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Bidomain models are commonly used for studying and simulating electrophysiological waves in the cardiac tissue. Most of the time, the associated PDEs are solved using explicit finite difference methods on structured grids. We propose an implicit finite element method using unstructured grids for an anisotropic bidomain model. The impact and numerical requirements of unstructured grid methods is investigated using a test case with re-entrant waves.

Single-point blow-up for a semilinear parabolic system

Ph. Souplet (2009)

Journal of the European Mathematical Society

We consider positive solutions of the system u t - Δ u = v p ; v t - Δ v = u q in a ball or in the whole space, with p , q > 1 . Relatively little is known on the blow-up set for semilinear parabolic systems and, up to now, no result was available for this basic system except for the very special case p = q . Here we prove single-point blow-up for a large class of radial decreasing solutions. This in particular solves a problem left open in a paper of A. Friedman and Y. Giga (1987). We also obtain lower pointwise estimates for the final...

Singular Perturbation Analysis of Travelling Waves for a Model in Phytopathology

J. B. Burie, A. Calonnec, A. Ducrot (2010)

Mathematical Modelling of Natural Phenomena

We investigate the structure of travelling waves for a model of a fungal disease propagating over a vineyard. This model is based on a set of ODEs of the SIR-type coupled with two reaction-diffusion equations describing the dispersal of the spores produced by the fungus inside and over the vineyard. An estimate of the biological parameters in the model suggests to use a singular perturbation analysis. It allows us to compute the speed and the profile of the travelling waves. The analytical results...

Some mathematical problems arising in heterogeneous insular ecological models.

Sébastien Gaucel, Michel Langlais (2002)

RACSAM

En esta nota se analizan dos modelos matemáticos deterministas planteados en problemas ecológicos causados por la introducción de nuevas especies en ambientes insulares heterogéneos. En el primero desarrollamos un modelo epidemológico con transmisión indirecta del virus por medio del ambiente. En el segundo se introduce un modelo específico de depredador-presa que exhibe la extinción en tiempo finito de las especies. Ambos modelos involucran sistemas de ecuaciones en derivadas parciales con interesantes...

Some results about dissipativity of Kolmogorov operators

Giuseppe Da Prato, Luciano Tubaro (2001)

Czechoslovak Mathematical Journal

Given a Hilbert space H with a Borel probability measure ν , we prove the m -dissipativity in L 1 ( H , ν ) of a Kolmogorov operator K that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.

Currently displaying 341 – 360 of 445