The search session has expired. Please query the service again.
We present in this paper a proof of well-posedness and convergence for the parallel Schwarz Waveform Relaxation Algorithm adapted to an N-dimensional semilinear heat equation. Since the equation we study is an evolution one, each subproblem at each step has its own local existence time, we then determine a common existence time for every problem in any subdomain at any step. We also introduce a new technique: Exponential Decay Error Estimates, to prove the convergence of the Schwarz Methods, with...
A phase field model for anti-plane shear crack growth in two dimensional isotropic elastic material is proposed. We introduce a phase field to represent the shape of the crack with a regularization parameter and we approximate the Francfort–Marigo type energy using the idea of Ambrosio and Tortorelli. The phase field model is derived as a gradient flow of this regularized energy. We show several numerical examples of the crack growth computed with an adaptive mesh finite element method.
In this paper, we study a postprocessing procedure for improving
accuracy of the finite volume element approximations of semilinear
parabolic problems. The procedure amounts to solve a source problem
on a coarser grid and then solve a linear elliptic problem on a
finer grid after the time evolution is finished. We derive error
estimates in the L2 and H1 norms for the standard finite
volume element scheme and an improved error estimate in the H1
norm. Numerical results demonstrate the accuracy...
Currently displaying 1 –
3 of
3