The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 41 – 60 of 139

Showing per page

On global motion of a compressible barotropic viscous fluid with boundary slip condition

Takayuki Kobayashi, Wojciech Zajączkowski (1999)

Applicationes Mathematicae

Global-in-time existence of solutions for equations of viscous compressible barotropic fluid in a bounded domain Ω ⊂ 3 with the boundary slip condition is proved. The solution is close to an equilibrium solution. The proof is based on the energy method. Moreover, in the L 2 -approach the result is sharp (the regularity of the solution cannot be decreased) because the velocity belongs to H 2 + α , 1 + α / 2 ( Ω × + ) and the density belongs to H 1 + α , 1 / 2 + α / 2 ( Ω × + ) , α ∈ (1/2,1).

On global regular solutions to the Navier-Stokes equations with heat convection

Piotr Kacprzyk (2013)

Annales Polonici Mathematici

Global existence of regular solutions to the Navier-Stokes equations for velocity and pressure coupled with the heat convection equation for temperature in a cylindrical pipe is shown. We assume the slip boundary conditions for velocity and the Neumann condition for temperature. First we prove long time existence of regular solutions in [kT,(k+1)T]. Having T sufficiently large and imposing some decay estimates on | | f ( t ) | | L ( Ω ) , | | f , x ( t ) | | L ( Ω ) we continue the local solutions step by step up to a global one.

On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion

Piotr Mucha, Wojciech Zajączkowski (2000)

Applicationes Mathematicae

The local-in-time existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion is proved. We show the existence of solutions with lowest possible regularity for this problem such that u W r 2 , 1 ( Ω ˜ T ) with r>3. The existence is proved by the method of successive approximations where the solvability of the Cauchy-Neumann problem for the Stokes system is applied. We have to underline that in the L p -approach the Lagrangian coordinates must be used. We are looking...

On local-in-time existence for the Dirichlet problem for equations of compressible viscous fluids

Piotr Boguslaw Mucha, Wojciech Zajączkowski (2002)

Annales Polonici Mathematici

The local existence of solutions for the compressible Navier-Stokes equations with the Dirichlet boundary conditions in the L p -framework is proved. Next an almost-global-in-time existence of small solutions is shown. The considerations are made in Lagrangian coordinates. The result is sharp in the L p -approach, because the velocity belongs to W r 2 , 1 with r > 3.

On optimal decay rates for weak solutions to the Navier-Stokes equations in R n

Tetsuro Miyakawa, Maria Elena Schonbek (2001)

Mathematica Bohemica

This paper is concerned with optimal lower bounds of decay rates for solutions to the Navier-Stokes equations in n . Necessary and sufficient conditions are given such that the corresponding Navier-Stokes solutions are shown to satisfy the algebraic bound u ( t ) ( t + 1 ) - n + 4 2 .

Currently displaying 41 – 60 of 139