The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 3

Displaying 41 – 43 of 43

Showing per page

Asymptotics for multifractal conservation laws

Piotr Biler, Grzegorz Karch, Wojbor Woyczynski (1999)

Studia Mathematica

We study asymptotic behavior of solutions to multifractal Burgers-type equation u t + f ( u ) x = A u , where the operator A is a linear combination of fractional powers of the second derivative - 2 / x 2 and f is a polynomial nonlinearity. Such equations appear in continuum mechanics as models with fractal diffusion. The results include decay rates of the L p -norms, 1 ≤ p ≤ ∞, of solutions as time tends to infinity, as well as determination of two successive terms of the asymptotic expansion of solutions.

Currently displaying 41 – 43 of 43

Previous Page 3