The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The aim of this note is to give a short review of our recent work (see [5]) with Miguel A. Alejo and Luis Vega, concerning the -stability, and asymptotic stability, of the -soliton of the Korteweg-de Vries (KdV) equation.
We study the long-time behavior of solutions of the initial-boundary value (IBV) problem for the Camassa–Holm (CH) equation on the half-line . The paper continues our study of IBV problems for the CH equation, the key tool of which is the formulation and analysis of associated Riemann–Hilbert factorization problems. We specify the regions in the quarter space-time plane , having qualitatively different asymptotic pictures, and give the main terms of the asymptotics in terms of spectral data...
In this paper, we survey some recent results on the asymptotic behavior, as time tends to infinity, of solutions to the Cauchy problems for the generalized Korteweg-de Vries-Burgers equation and the generalized Benjamin-Bona-Mahony-Burgers equation. The main results give higher-order terms of the asymptotic expansion of solutions.
Currently displaying 1 –
16 of
16