Displaying 2401 – 2420 of 4754

Showing per page

Mixing on rank-one transformations

Darren Creutz, Cesar E. Silva (2010)

Studia Mathematica

We prove that mixing on rank-one transformations is equivalent to "the uniform convergence of ergodic averages (as in the mean ergodic theorem) over subsequences of partial sums". In particular, all polynomial staircase transformations are mixing.

Mixing properties of nearly maximal entropy measures for d shifts of finite type

E. Robinson, Ayşe Şahin (2000)

Colloquium Mathematicae

We prove that for a certain class of d shifts of finite type with positive topological entropy there is always an invariant measure, with entropy arbitrarily close to the topological entropy, that has strong metric mixing properties. With the additional assumption that there are dense periodic orbits, one can ensure that this measure is Bernoulli.

Mixing via families for measure preserving transformations

Rui Kuang, Xiangdong Ye (2008)

Colloquium Mathematicae

In topological dynamics a theory of recurrence properties via (Furstenberg) families was established in the recent years. In the current paper we aim to establish a corresponding theory of ergodicity via families in measurable dynamical systems (MDS). For a family ℱ (of subsets of ℤ₊) and a MDS (X,,μ,T), several notions of ergodicity related to ℱ are introduced, and characterized via the weak topology in the induced Hilbert space L²(μ). T is ℱ-convergence ergodic of order k if for any A , . . . , A k of positive...

Mod 2 normal numbers and skew products

Geon Ho Choe, Toshihiro Hamachi, Hitoshi Nakada (2004)

Studia Mathematica

Let E be an interval in the unit interval [0,1). For each x ∈ [0,1) define dₙ(x) ∈ 0,1 by d ( x ) : = i = 1 n 1 E ( 2 i - 1 x ) ( m o d 2 ) , where t is the fractional part of t. Then x is called a normal number mod 2 with respect to E if N - 1 n = 1 N d ( x ) converges to 1/2. It is shown that for any interval E ≠(1/6, 5/6) a.e. x is a normal number mod 2 with respect to E. For E = (1/6, 5/6) it is proved that N - 1 n = 1 N d ( x ) converges a.e. and the limit equals 1/3 or 2/3 depending on x.

Model of AIDS-related tumour with time delay

Marek Bodnar, Urszula Foryś, Zuzanna Szymańska (2009)

Applicationes Mathematicae

We present and compare two simple models of immune system and cancer cell interactions. The first model reflects simple cancer disease progression and serves as our "control" case. The second describes the progression of a cancer disease in the case of a patient infected with the HIV-1 virus.

Modeling the Cancer Stem Cell Hypothesis

C. Calmelet, A. Prokop, J. Mensah, L. J. McCawley, P. S. Crooke (2010)

Mathematical Modelling of Natural Phenomena

Solid tumors and hematological cancers contain small population of tumor cells that are believed to play a critical role in the development and progression of the disease. These cells, named Cancer Stem Cells (CSCs), have been found in leukemia, myeloma, breast, prostate, pancreas, colon, brain and lung cancers. It is also thought that CSCs drive the metastatic spread of cancer. The CSC compartment features a specific and phenotypically defined cell...

Modelling the spiders ballooning effect on the vineyard ecology

E. Venturino, M. Isaia, F. Bona, E. Issoglio, V. Triolo, G. Badino (2010)

Mathematical Modelling of Natural Phenomena

We consider an ecosystem in which spiders may be transported by the wind from vineyards into the surrounding woods and vice versa. The model takes into account this tranport phenomenon without building space explicitly into the governing equations. The equilibria of the dynamical system are analyzed together with their stability, showing that bifurcations may occur. Then the effects of indiscriminated spraying to keep pests under control is also investigated via suitable simulations.

Modelling Tuberculosis and Hepatitis B Co-infections

S. Bowong, J. Kurths (2010)

Mathematical Modelling of Natural Phenomena

Tuberculosis (TB) is the leading cause of death among individuals infected with the hepatitis B virus (HBV). The study of the joint dynamics of HBV and TB present formidable mathematical challenges due to the fact that the models of transmission are quite distinct. We formulate and analyze a deterministic mathematical model which incorporates of the co-dynamics of hepatitis B and tuberculosis. Two sub-models, namely: HBV-only and TB-only sub-models...

Modular dynamical systems on networks

Lee DeVille, Eugene Lerman (2015)

Journal of the European Mathematical Society

We propose a new framework for the study of continuous time dynamical systems on networks. We view such dynamical systems as collections of interacting control systems. We show that a class of maps between graphs called graph fibrations give rise to maps between dynamical systems on networks. This allows us to produce conjugacy between dynamical systems out of combinatorial data. In particular we show that surjective graph fibrations lead to synchrony subspaces in networks. The injective graph fibrations,...

Modulation of the Camassa-Holm equation and reciprocal transformations

Simonetta Abenda, Tamara Grava (2005)

Annales de l’institut Fourier

We derive the modulation equations (Whitham equations) for the Camassa-Holm (CH) equation. We show that the modulation equations are hyperbolic and admit a bi-Hamiltonian structure. Furthermore they are connected by a reciprocal transformation to the modulation equations of the first negative flow of the Korteweg de Vries (KdV) equation. The reciprocal transformation is generated by the Casimir of the second Poisson bracket of the KdV averaged flow. We show that the geometry...

Currently displaying 2401 – 2420 of 4754