The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 3161 – 3180 of 4762

Showing per page

Periodic billiard orbits in right triangles

Serge Troubetzkoy (2005)

Annales de l’institut Fourier

There is an open set of right triangles such that for each irrational triangle in this set (i) periodic billiards orbits are dense in the phase space, (ii) there is a unique nonsingular perpendicular billiard orbit which is not periodic, and (iii) the perpendicular periodic orbits fill the corresponding invariant surface.

Periodic harmonic functions on lattices and points count in positive characteristic

Mikhail Zaidenberg (2009)

Open Mathematics

This survey deals with pluri-periodic harmonic functions on lattices with values in a field of positive characteristic. We mention, as a motivation, the game “Lights Out” following the work of Sutner [20], Goldwasser- Klostermeyer-Ware [5], Barua-Ramakrishnan-Sarkar [2, 19], Hunzikel-Machiavello-Park [12] e.a.; see also [22, 23] for a more detailed account. Our approach uses harmonic analysis and algebraic geometry over a field of positive characteristic.

Periodic orbits and chain-transitive sets of C1-diffeomorphisms

Sylvain Crovisier (2006)

Publications Mathématiques de l'IHÉS

We prove that the chain-transitive sets of C1-generic diffeomorphisms are approximated in the Hausdorff topology by periodic orbits. This implies that the homoclinic classes are dense among the chain-recurrence classes. This result is a consequence of a global connecting lemma, which allows to build by a C1-perturbation an orbit connecting several prescribed points. One deduces a weak shadowing property satisfied by C1-generic diffeomorphisms: any pseudo-orbit is approximated in the Hausdorff topology...

Periodic orbits close to elliptic tori and applications to the three-body problem

Massimiliano Berti, Luca Biasco, Enrico Valdinoci (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We prove, under suitable non-resonance and non-degeneracy “twist” conditions, a Birkhoff-Lewis type result showing the existence of infinitely many periodic solutions, with larger and larger minimal period, accumulating onto elliptic invariant tori (of hamiltonian systems). We prove the applicability of this result to the spatial planetary three-body problem in the small eccentricity-inclination regime. Furthermore, we find other periodic orbits under some restrictions on the period and the masses...

Currently displaying 3161 – 3180 of 4762