The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 3601 – 3620 of 4762

Showing per page

Sequence entropy and rigid σ-algebras

Alvaro Coronel, Alejandro Maass, Song Shao (2009)

Studia Mathematica

We study relationships between sequence entropy and the Kronecker and rigid algebras. Let (Y,,ν,T) be a factor of a measure-theoretical dynamical system (X,,μ,T) and S be a sequence of positive integers with positive upper density. We prove there exists a subsequence A ⊆ S such that h μ A ( T , ξ | ) = H μ ( ξ | ( X | Y ) ) for all finite partitions ξ, where (X|Y) is the Kronecker algebra over . A similar result holds for rigid algebras over . As an application, we characterize compact, rigid and mixing extensions via relative sequence...

Sequence entropy pairs and complexity pairs for a measure

Wen Huang, Alejandro Maass, Xiangdong Ye (2004)

Annales de l’institut Fourier

In this paper we explore topological factors in between the Kronecker factor and the maximal equicontinuous factor of a system. For this purpose we introduce the concept of sequence entropy n -tuple for a measure and we show that the set of sequence entropy tuples for a measure is contained in the set of topological sequence entropy tuples [H- Y]. The reciprocal is not true. In addition, following topological ideas in [BHM], we introduce a weak notion and a strong notion of complexity pair for a...

Sequences of algebraic integers and density modulo  1

Roman Urban (2007)

Journal de Théorie des Nombres de Bordeaux

We prove density modulo 1 of the sets of the form { μ m λ n ξ + r m : n , m } , where λ , μ is a pair of rationally independent algebraic integers of degree d 2 , satisfying some additional assumptions, ξ 0 , and r m is any sequence of real numbers.

Set arithmetic and the enclosing problem in dynamics

Marian Mrozek, Piotr Zgliczyński (2000)

Annales Polonici Mathematici

We study the enclosing problem for discrete and continuous dynamical systems in the context of computer assisted proofs. We review and compare the existing methods and emphasize the importance of developing a suitable set arithmetic for efficient algorithms solving the enclosing problem.

Sets of k -recurrence but not ( k + 1 ) -recurrence

Nikos Frantzikinakis, Emmanuel Lesigne, Máté Wierdl (2006)

Annales de l’institut Fourier

For every k , we produce a set of integers which is k -recurrent but not ( k + 1 ) -recurrent. This extends a result of Furstenberg who produced a 1 -recurrent set which is not 2 -recurrent. We discuss a similar result for convergence of multiple ergodic averages. We also point out a combinatorial consequence related to Szemerédi’s theorem.

Sets of nondifferentiability for conjugacies between expanding interval maps

Thomas Jordan, Marc Kesseböhmer, Mark Pollicott, Bernd O. Stratmann (2009)

Fundamenta Mathematicae

We study differentiability of topological conjugacies between expanding piecewise C 1 + ϵ interval maps. If these conjugacies are not C¹, then their derivative vanishes Lebesgue almost everywhere. We show that in this case the Hausdorff dimension of the set of points for which the derivative of the conjugacy does not exist lies strictly between zero and one. Moreover, by employing the thermodynamic formalism, we show that this Hausdorff dimension can be determined explicitly in terms of the Lyapunov spectrum....

Sets of β -expansions and the Hausdorff measure of slices through fractals

Tom Kempton (2016)

Journal of the European Mathematical Society

We study natural measures on sets of β -expansions and on slices through self similar sets. In the setting of β -expansions, these allow us to better understand the measure of maximal entropy for the random β -transformation and to reinterpret a result of Lindenstrauss, Peres and Schlag in terms of equidistribution. Each of these applications is relevant to the study of Bernoulli convolutions. In the fractal setting this allows us to understand how to disintegrate Hausdorff measure by slicing, leading...

Sets with doubleton sections, good sets and ergodic theory

A. Kłopotowski, M. G. Nadkarni, H. Sarbadhikari, S. M. Srivastava (2002)

Fundamenta Mathematicae

A Borel subset of the unit square whose vertical and horizontal sections are two-point sets admits a natural group action. We exploit this to discuss some questions about Borel subsets of the unit square on which every function is a sum of functions of the coordinates. Connection with probability measures with prescribed marginals and some function algebra questions is discussed.

Several examples of nonholonomic mechanical systems

Martin Swaczyna (2011)

Communications in Mathematics

A unified geometric approach to nonholonomic constrained mechanical systems is applied to several concrete problems from the classical mechanics of particles and rigid bodies. In every of these examples the given constraint conditions are analysed, a corresponding constraint submanifold in the phase space is considered, the corresponding constrained mechanical system is modelled on the constraint submanifold, the reduced equations of motion of this system (i.e. equations of motion defined on the...

Shadow trees of Mandelbrot sets

Virpi Kauko (2003)

Fundamenta Mathematicae

The topology and combinatorial structure of the Mandelbrot set d (of degree d ≥ 2) can be studied using symbolic dynamics. Each parameter is mapped to a kneading sequence, or equivalently, an internal address; but not every such sequence is realized by a parameter in d . Thus the abstract Mandelbrot set is a subspace of a larger, partially ordered symbol space, Λ d . In this paper we find an algorithm to construct “visible trees” from symbolic sequences which works whether or not the sequence is realized....

Shadowing and expansivity in subspaces

Andrew D. Barwell, Chris Good, Piotr Oprocha (2012)

Fundamenta Mathematicae

We address various notions of shadowing and expansivity for continuous maps restricted to a proper subset of their domain. We prove new equivalences of shadowing and expansive properties, we demonstrate under what conditions certain expanding maps have shadowing, and generalize some known results in this area. We also investigate the impact of our theory on maps of the interval.

Shadowing and internal chain transitivity

Jonathan Meddaugh, Brian E. Raines (2013)

Fundamenta Mathematicae

The main result of this paper is that a map f: X → X which has shadowing and for which the space of ω-limits sets is closed in the Hausdorff topology has the property that a set A ⊆ X is an ω-limit set if and only if it is closed and internally chain transitive. Moreover, a map which has the property that every closed internally chain transitive set is an ω-limit set must also have the property that the space of ω-limit sets is closed. As consequences of this result, we show that interval maps with...

Shadowing in actions of some Abelian groups

Sergei Yu. Pilyugin, Sergei B. Tikhomirov (2003)

Fundamenta Mathematicae

We study shadowing properties of continuous actions of the groups p and p × p . Necessary and sufficient conditions are given under which a linear action of p on m has a Lipschitz shadowing property.

Shadowing in multi-dimensional shift spaces

Piotr Oprocha (2008)

Colloquium Mathematicae

We show that the class of expansive d actions with P.O.T.P. is wider than the class of actions topologically hyperbolic in some direction ν d . Our main tool is an extension of a result by Walters to the multi-dimensional symbolic dynamics case.

Shape index and other indices of Conley type for local maps on locally compact Hausdorff spaces

Marian Mrozek (1994)

Fundamenta Mathematicae

We present a scheme for constructing various Conley indices for locally defined maps. In particular, we extend the shape index of Robbin and Salamon to the case of a locally defined map in a locally compact Hausdorff space. We compare the shape index with the cohomological Conley index for maps. We also prove the commutativity property of the Conley index, which is analogous to the commutativity property of the fixed point index.

Currently displaying 3601 – 3620 of 4762