Topology of vortices
A technique is presented for multiplexing two ergodic measure preserving transformations together to derive a third limiting transformation. This technique is used to settle a question regarding rigidity sequences of weak mixing transformations. Namely, given any rigidity sequence for an ergodic measure preserving transformation, there exists a weak mixing transformation which is rigid along the same sequence. This establishes a wide range of rigidity sequences for weakly mixing dynamical systems....
We give an explicit upper bound for the number of isolated intersections between an integral curve of a polynomial vector field in and an algebraic hypersurface. The answer is polynomial in the height (the magnitude of coefficients) of the equation and the size of the curve in the space-time, with the exponent depending only on the degree and the dimension.The problem turns out to be closely related to finding an explicit upper bound for the length of ascending chains of polynomial ideals spanned...
It is known that for almost every (with respect to Lebesgue measure) a ∈ [√2,2] the forward trajectory of the turning point of the tent map with slope a is dense in the interval of transitivity of . We prove that the complement of this set of parameters of full measure is σ-porous.
Let be a non-periodic collection of commuting measure preserving transformations on a probability space (Ω,Σ,μ). Also let Γ be a nonempty subset of and the associated collection of rectangular parallelepipeds in with sides parallel to the axes and dimensions of the form with The associated multiparameter geometric and ergodic maximal operators and are defined respectively on and L¹(Ω) by and . Given a Young function Φ, it is shown that satisfies the weak type estimate for...
In this paper we characterize manifolds (topological or smooth, compact or not, with or without boundary) which admit flows having a dense orbit (such manifolds and flows are called transitive) thus fully answering some questions by Smith and Thomas. Name
We prove that for continuous interval maps the existence of a non-empty closed invariant subset which is transitive and sensitive to initial conditions is implied by positive topological entropy and implies chaos in the sense of Li-Yorke, and we exhibit examples showing that these three notions are distinct.