Integrable Hamiltonian systems on Lie groups: Kowalewski type.
It is well-known that the Poisson-Nijenhuis manifolds, introduced by Kosmann-Schwarzbach and Magri form the appropriate setting for studying many classical integrable hierarchies. In order to define the hierarchy, one usually specifies in addition to the Poisson-Nijenhuis manifold a bi-hamiltonian vector field. In this paper we show that to every Poisson-Nijenhuis manifold one can associate a canonical vector field (no extra choices are involved!) which under an appropriate assumption defines an...
The main purpose of this paper is to present in a unified approach to different results concerning group actions and integrable systems in symplectic, Poisson and contact manifolds. Rigidity problems for integrable systems in these manifolds will be explored from this perspective.
We use the methods that were developed by Adler and van Moerbeke to determine explicit equations for a certain moduli space, that was studied by Narasimhan and Ramanan. Stated briefly it is, for a fixed non-hyperelliptic Riemann surface of genus , the moduli space of semi-stable rank two bundles with trivial determinant on . They showed that it can be realized as a projective variety, more precisely as a quartic hypersurface of , whose singular locus is the Kummer variety of . We first construct...
The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the Lie algebra of integro-differential operators with matrix coefficients, extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems, is obtained via some special Bäcklund transformation. The connection of this hierarchy with integrable by Lax two-dimensional Davey-Stewartson type systems is studied.
We show that for a holomorphic foliation with singularities in a projective variety such that every leaf is quasiprojective, the set of rational functions that are constant on the leaves form a field whose transcendence degree equals the codimension of the foliation.
The purpose of this paper is to apply particle methods to the numerical solution of the EPDiff equation. The weak solutions of EPDiff are contact discontinuities that carry momentum so that wavefront interactions represent collisions in which momentum is exchanged. This behavior allows for the description of many rich physical applications, but also introduces difficult numerical challenges. We present a particle method for the EPDiff equation that is well-suited for this class of solutions and...
The purpose of this paper is to apply particle methods to the numerical solution of the EPDiff equation. The weak solutions of EPDiff are contact discontinuities that carry momentum so that wavefront interactions represent collisions in which momentum is exchanged. This behavior allows for the description of many rich physical applications, but also introduces difficult numerical challenges. We present a particle method for the EPDiff equation that...
Despite recent advances, treatment of patients with aggressive Non-Hodgkin's lymphoma (NHL2) has yet to be optimally designed. Notwithstanding the contribution of molecular treatments, intensification of chemotherapeutic regimens may still be beneficial. Hoping to aid in the design of intensified chemotherapy, we put forward a mathematical and computational model that analyses the effect of Doxorubicin on NHL over a wide range of patho-physiological conditions. The model represents tumour growth...
Spatiotemporal patterns near a codimension-2 Turing-Hopf point of the one-dimensional superdiffusive Brusselator model are analyzed. The superdiffusive Brusselator model differs from its regular counterpart in that the Laplacian operator of the regular model is replaced by ∂α/∂|ξ|α, 1 < α < 2, an integro-differential operator that reflects the nonlocal behavior of superdiffusion. The order of the operator, α, is a measure of the rate of ...