Displaying 81 – 100 of 178

Showing per page

Intermittency properties in a hyperbolic Anderson problem

Robert C. Dalang, Carl Mueller (2009)

Annales de l'I.H.P. Probabilités et statistiques

We study the asymptotics of the even moments of solutions to a stochastic wave equation in spatial dimension 3 with linear multiplicative spatially homogeneous gaussian noise that is white in time. Our main theorem states that these moments grow more quickly than one might expect. This phenomenon is well known for parabolic stochastic partial differential equations, under the name of intermittency. Our results seem to be the first example of this phenomenon for hyperbolic equations. For comparison,...

Intertwined internal rays in Julia sets of rational maps

Robert L. Devaney (2009)

Fundamenta Mathematicae

We show how the well-known concept of external rays in polynomial dynamics may be extended throughout the Julia set of certain rational maps. These new types of rays, which we call internal rays, meet the Julia set in a Cantor set of points, and each of these rays crosses infinitely many other internal rays at many points. We then use this construction to show that there are infinitely many disjoint copies of the Mandelbrot set in the parameter planes for these maps.

Intertwined mappings

Jean Ecalle, Bruno Vallet (2004)

Annales de la Faculté des sciences de Toulouse : Mathématiques

Intertwining of birth-and-death processes

Jan M. Swart (2011)

Kybernetika

It has been known for a long time that for birth-and-death processes started in zero the first passage time of a given level is distributed as a sum of independent exponentially distributed random variables, the parameters of which are the negatives of the eigenvalues of the stopped process. Recently, Diaconis and Miclo have given a probabilistic proof of this fact by constructing a coupling between a general birth-and-death process and a process whose birth rates are the negatives of the eigenvalues,...

Intracellular Modelling of Cell-Matrix Adhesion during Cancer Cell Invasion

V. Andasari, M.A.J. Chaplain (2012)

Mathematical Modelling of Natural Phenomena

When invading the tissue, malignant tumour cells (i.e. cancer cells) need to detach from neighbouring cells, degrade the basement membrane, and migrate through the extracellular matrix. These processes require loss of cell-cell adhesion and enhancement of cell-matrix adhesion. In this paper we present a mathematical model of an intracellular pathway for the interactions between a cancer cell and the extracellular matrix. Cancer cells use similar...

Introduction

Pascale Roesch (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

Introduction to Iterated Monodromy Groups

Sébastien Godillon (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

The theory of iterated monodromy groups was developed by Nekrashevych [9]. It is a wonderful example of application of group theory in dynamical systems and, in particular, in holomorphic dynamics. Iterated monodromy groups encode in a computationally efficient way combinatorial information about any dynamical system induced by a post-critically finite branched covering. Their power was illustrated by a solution of the Hubbard Twisted Rabbit Problem given by Bartholdi and Nekrashevych [2].These...

Invariance of global solutions of the Hamilton-Jacobi equation

Ezequiel Maderna (2002)

Bulletin de la Société Mathématique de France

We show that every global viscosity solution of the Hamilton-Jacobi equation associated with a convex and superlinear Hamiltonian on the cotangent bundle of a closed manifold is necessarily invariant under the identity component of the group of symmetries of the Hamiltonian (we prove that this group is a compact Lie group). In particular, every Lagrangian section invariant under the Hamiltonian flow is also invariant under this group.

Invariance of Poisson measures under random transformations

Nicolas Privault (2012)

Annales de l'I.H.P. Probabilités et statistiques

We prove that Poisson measures are invariant under (random) intensity preserving transformations whose finite difference gradient satisfies a cyclic vanishing condition. The proof relies on moment identities of independent interest for adapted and anticipating Poisson stochastic integrals, and is inspired by the method of Üstünel and Zakai (Probab. Theory Related Fields103 (1995) 409–429) on the Wiener space, although the corresponding algebra is more complex than in the Wiener case. The examples...

Invariance of the Gibbs measure for the Benjamin–Ono equation

Yu Deng (2015)

Journal of the European Mathematical Society

In this paper we consider the periodic Benjemin-Ono equation.We establish the invariance of the Gibbs measure associated to this equation, thus answering a question raised in Tzvetkov [28]. As an intermediate step, we also obtain a local well-posedness result in Besov-type spaces rougher than L 2 , extending the L 2 well-posedness result of Molinet [20].

Currently displaying 81 – 100 of 178