Displaying 861 – 880 of 1168

Showing per page

Some stochastic comparison results for series and parallel systems with heterogeneous Pareto type components

Lakshmi Kanta Patra, Suchandan Kayal, Phalguni Nanda (2018)

Applications of Mathematics

We focus on stochastic comparisons of lifetimes of series and parallel systems consisting of independent and heterogeneous new Pareto type components. Sufficient conditions involving majorization type partial orders are provided to obtain stochastic comparisons in terms of various magnitude and dispersive orderings which include usual stochastic order, hazard rate order, dispersive order and right spread order. The usual stochastic order of lifetimes of series systems with possibly different scale...

Some Tauberian theorems related to operator theory

C. Batty (1994)

Banach Center Publications

This article is a survey of some Tauberian theorems obtained recently in connection with work on asymptotic behaviour of semigroups of operators on Banach spaces. The results in operator theory are described in [6], where we made little attempt to show the Tauberian aspects. At the end of this article, we will give a sketch of the connections between the results in this article and in [6]; for details, the reader can turn to the original papers. In this article, we make no attempt to describe...

Some λ -sequence spaces defined by a modulus

Eberhard Malkowsky, Ekrem Savaş (2000)

Archivum Mathematicum

The main object of this paper is to introduce and study some sequence spaces which arise from the notation of generalized de la Vallée–Poussin means and the concept of a modulus function.

Sommation effective d’une somme de Borel par séries de factorielles

Eric Delabaere, Jean-Marc Rasoamanana (2007)

Annales de l’institut Fourier

Nous abordons dans cet article la question de la sommation effective d’une somme de Borel d’une série par la série de factorielles associée. Notre approche fournit un contrôle de l’erreur entre la somme de Borel recherchée et les sommes partielles de la série de factorielles. Nous généralisons ensuite cette méthode au cadre des séries de puissances fractionnaires, après avoir démontré un analogue d’un théorème de Nevanlinna de sommation de Borel fine pour ce cadre.

Spaces not distinguishing pointwise and -quasinormal convergence

Pratulananda Das, Debraj Chandra (2013)

Commentationes Mathematicae Universitatis Carolinae

In this paper we extend the notion of quasinormal convergence via ideals and consider the notion of -quasinormal convergence. We then introduce the notion of Q N ( w Q N ) space as a topological space in which every sequence of continuous real valued functions pointwise converging to 0 , is also -quasinormally convergent to 0 (has a subsequence which is -quasinormally convergent to 0 ) and make certain observations on those spaces.

Spectral decompositions, ergodic averages, and the Hilbert transform

Earl Berkson, T. A. Gillespie (2001)

Studia Mathematica

Let U be a trigonometrically well-bounded operator on a Banach space , and denote by ( U ) n = 1 the sequence of (C,2) weighted discrete ergodic averages of U, that is, ( U ) = 1 / n 0 < | k | n ( 1 - | k | / ( n + 1 ) ) U k . We show that this sequence ( U ) n = 1 of weighted ergodic averages converges in the strong operator topology to an idempotent operator whose range is x ∈ : Ux = x, and whose null space is the closure of (I - U). This result expands the scope of the traditional Ergodic Theorem, and thereby serves as a link between Banach space spectral theory and...

Spherical summation : a problem of E.M. Stein

Antonio Cordoba, B. Lopez-Melero (1981)

Annales de l'institut Fourier

Writing ( T R λ f ) ^ ( ξ ) = ( 1 - | ξ | 2 / R 2 ) + λ f ^ ( ξ ) . E. Stein conjectured j | T R j λ f i | 2 1 / 2 p C j | f j | 2 1 / 2 p for λ &gt; 0 , 4 3 p 4 and C = C λ , p . We prove this conjecture. We prove also f ( x ) = lim j T 2 j λ f ( x ) a.e. We only assume 4 3 + 2 λ &lt; p &lt; 4 1 - 2 λ .

Statistical cluster points of sequences in finite dimensional spaces

Serpil Pehlivan, A. Güncan, M. A. Mamedov (2004)

Czechoslovak Mathematical Journal

In this paper we study the set of statistical cluster points of sequences in m -dimensional spaces. We show that some properties of the set of statistical cluster points of the real number sequences remain in force for the sequences in m -dimensional spaces too. We also define a notion of Γ -statistical convergence. A sequence x is Γ -statistically convergent to a set C if C is a minimal closed set such that for every ϵ > 0 the set { k ρ ( C , x k ) ϵ } has density zero. It is shown that every statistically bounded sequence...

Statistical convergence of a sequence of random variables and limit theorems

Sanjoy Ghosal (2013)

Applications of Mathematics

In this paper the ideas of three types of statistical convergence of a sequence of random variables, namely, statistical convergence in probability, statistical convergence in mean of order r and statistical convergence in distribution are introduced and the interrelation among them is investigated. Also their certain basic properties are studied.

Currently displaying 861 – 880 of 1168