The search session has expired. Please query the service again.

Displaying 661 – 680 of 3651

Showing per page

CLO spaces and central maximal operators

Martha Guzmán-Partida (2013)

Archivum Mathematicum

We consider central versions of the space BLO studied by Coifman and Rochberg and later by Bennett, as well as some natural relations with a central version of a maximal operator.

Closure of dilates of shift-invariant subspaces

Moisés Soto-Bajo (2013)

Open Mathematics

Let V be any shift-invariant subspace of square summable functions. We prove that if for some A expansive dilation V is A-refinable, then the completeness property is equivalent to several conditions on the local behaviour at the origin of the spectral function of V, among them the origin is a point of A*-approximate continuity of the spectral function if we assume this value to be one. We present our results also in a more general setting of A-reducing spaces. We also prove that the origin is a...

Coarea integration in metric spaces

Malý, Jan (2003)

Nonlinear Analysis, Function Spaces and Applications

Let X be a metric space with a doubling measure, Y be a boundedly compact metric space and u : X Y be a Lebesgue precise mapping whose upper gradient g belongs to the Lorentz space L m , 1 , m 1 . Let E X be a set of measure zero. Then ^ m ( E u - 1 ( y ) ) = 0 for m -a.e. y Y , where m is the m -dimensional Hausdorff measure and ^ m is the m -codimensional Hausdorff measure. This property is closely related to the coarea formula and implies a version of the Eilenberg inequality. The result relies on estimates of Hausdorff content of level sets...

Coefficient multipliers on spaces of vector-valued entire Dirichlet series

Sharma Akanksha, Girja S. Srivastava (2017)

Mathematica Bohemica

The spaces of entire functions represented by Dirichlet series have been studied by Hussein and Kamthan and others. In the present paper we consider the space X of all entire functions defined by vector-valued Dirichlet series and study the properties of a sequence space which is defined using the type of an entire function represented by vector-valued Dirichlet series. The main result concerns with obtaining the nature of the dual space of this sequence space and coefficient multipliers for some...

Commutants of the Dunkl Operators in C(R)

Dimovski, Ivan, Hristov, Valentin, Sifi, Mohamed (2006)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 44A35; 42A75; 47A16, 47L10, 47L80The Dunkl operators.* Supported by the Tunisian Research Foundation under 04/UR/15-02.

Commutators based on the Calderón reproducing formula

Krzysztof Nowak (1993)

Studia Mathematica

We prove the Schatten-Lorentz ideal criteria for commutators of multiplications and projections based on the Calderón reproducing formula and the decomposition theorem for the space of symbols corresponding to commutators in the Schatten ideal.

Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent

Hongbin Wang (2016)

Czechoslovak Mathematical Journal

Let Ω L s ( S n - 1 ) for s 1 be a homogeneous function of degree zero and b a BMO function. The commutator generated by the Marcinkiewicz integral μ Ω and b is defined by [ b , μ Ω ] ( f ) ( x ) = ( 0 | x - y | t Ω ( x - y ) | x - y | n - 1 [ b ( x ) - b ( y ) ] f ( y ) d y | 2 d t t 3 1 / 2 . In this paper, the author proves the ( L p ( · ) ( n ) , L p ( · ) ( n ) ) -boundedness of the Marcinkiewicz integral operator μ Ω and its commutator [ b , μ Ω ] when p ( · ) satisfies some conditions. Moreover, the author obtains the corresponding result about μ Ω and [ b , μ Ω ] on Herz spaces with variable exponent.

Commutators of singular integrals on spaces of homogeneous type

Gladis Pradolini, Oscar Salinas (2007)

Czechoslovak Mathematical Journal

In this work we prove some sharp weighted inequalities on spaces of homogeneous type for the higher order commutators of singular integrals introduced by R. Coifman, R. Rochberg and G. Weiss in Factorization theorems for Hardy spaces in several variables, Ann. Math. 103 (1976), 611–635. As a corollary, we obtain that these operators are bounded on L p ( w ) when w belongs to the Muckenhoupt’s class A p , p > 1 . In addition, as an important tool in order to get our main result, we prove a weighted Fefferman-Stein...

Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces

Vagif Sabir Guliyev, Turhan Karaman, Rza Chingiz Mustafayev, Ayhan Şerbetçi (2014)

Czechoslovak Mathematical Journal

In this paper, the boundedness of a large class of sublinear commutator operators T b generated by a Calderón-Zygmund type operator on a generalized weighted Morrey spaces M p , ϕ ( w ) with the weight function w belonging to Muckenhoupt’s class A p is studied. When 1 < p < and b BMO , sufficient conditions on the pair ( ϕ 1 , ϕ 2 ) which ensure the boundedness of the operator T b from M p , ϕ 1 ( w ) to M p , ϕ 2 ( w ) are found. In all cases the conditions for the boundedness of T b are given in terms of Zygmund-type integral inequalities on ( ϕ 1 , ϕ 2 ) , which do not require...

Commutators of the fractional maximal function on variable exponent Lebesgue spaces

Pu Zhang, Jianglong Wu (2014)

Czechoslovak Mathematical Journal

Let M β be the fractional maximal function. The commutator generated by M β and a suitable function b is defined by [ M β , b ] f = M β ( b f ) - b M β ( f ) . Denote by 𝒫 ( n ) the set of all measurable functions p ( · ) : n [ 1 , ) such that 1 < p - : = ess inf x n p ( x ) and p + : = ess sup x n p ( x ) < , and by ( n ) the set of all p ( · ) 𝒫 ( n ) such that the Hardy-Littlewood maximal function M is bounded on L p ( · ) ( n ) . In this paper, the authors give some characterizations of b for which [ M β , b ] is bounded from L p ( · ) ( n ) into L q ( · ) ( n ) , when p ( · ) 𝒫 ( n ) , 0 < β < n / p + and 1 / q ( · ) = 1 / p ( · ) - β / n with q ( · ) ( n - β ) / n ( n ) .

Commutators with fractional integral operators

Irina Holmes, Robert Rahm, Scott Spencer (2016)

Studia Mathematica

We investigate weighted norm inequalities for the commutator of a fractional integral operator and multiplication by a function. In particular, we show that, for μ , λ A p , q and α/n + 1/q = 1/p, the norm | | [ b , I α ] : L p ( μ p ) L q ( λ q ) | | is equivalent to the norm of b in the weighted BMO space BMO(ν), where ν = μ λ - 1 . This work extends some of the results on this topic existing in the literature, and continues a line of investigation which was initiated by Bloom in 1985 and was recently developed further by the first author, Lacey, and Wick.

Compactly supported frames for spaces of distributions associated with nonnegative self-adjoint operators

S. Dekel, G. Kerkyacharian, G. Kyriazis, P. Petrushev (2014)

Studia Mathematica

A small perturbation method is developed and employed to construct frames with compactly supported elements of small shrinking support for Besov and Triebel-Lizorkin spaces in the general setting of a doubling metric measure space in the presence of a nonnegative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. This allows one, in particular, to construct compactly supported frames for Besov and Triebel-Lizorkin spaces on the sphere, on the interval with...

Compactness criteria in function spaces

Monika Dörfler, Hans G. Feichtinger, Karlheinz Gröchenig (2002)

Colloquium Mathematicae

The classical criterion for compactness in Banach spaces of functions can be reformulated into a simple tightness condition in the time-frequency domain. This description preserves more explicitly the symmetry between time and frequency than the classical conditions. The result is first stated and proved for L ² ( d ) , and then generalized to coorbit spaces. As special cases, we obtain new characterizations of compactness in Besov-Triebel-Lizorkin, modulation and Bargmann-Fock spaces.

Currently displaying 661 – 680 of 3651