The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 341 – 360 of 693

Showing per page

Norm inequalities for off-centered maximal operators.

Richard L. Wheeden (1993)

Publicacions Matemàtiques

Sufficient conditions are derived in order that there exist strong-type weighted norm inequalities for some off-centered maximal functions. The maximal functions are of Hardy-Littlewood and fractional types taken over starlike sets in Rn. The sufficient conditions are close to necessary and extend some previously known weak-type results.

Norm inequalities for the minimal and maximal operator, and differentiation of the integral.

David Cruz-Uribe, Christoph J. Neugebauer, Victor Olesen (1997)

Publicacions Matemàtiques

We study the weighted norm inequalities for the minimal operator, a new operator analogous to the Hardy-Littlewood maximal operator which arose in the study of reverse Hölder inequalities. We characterize the classes of weights which govern the strong and weak-type norm inequalities for the minimal operator in the two weight case, and show that these classes are the same. We also show that a generalization of the minimal operator can be used to obtain information about the differentiability of the...

Note on duality of weighted multi-parameter Triebel-Lizorkin spaces

Wei Ding, Jiao Chen, Yaoming Niu (2019)

Czechoslovak Mathematical Journal

We study the duality theory of the weighted multi-parameter Triebel-Lizorkin spaces F ˙ p α , q ( ω ; n 1 × n 2 ) . This space has been introduced and the result ( F ˙ p α , q ( ω ; n 1 × n 2 ) ) * = CMO p - α , q ' ( ω ; n 1 × n 2 ) for 0 < p 1 has been proved in Ding, Zhu (2017). In this paper, for 1 < p < , 0 < q < we establish its dual space H ˙ p α , q ( ω ; n 1 × n 2 ) .

On a converse inequality for maximal functions in Orlicz spaces

H. Kita (1996)

Studia Mathematica

Let Φ ( t ) = ʃ 0 t a ( s ) d s and Ψ ( t ) = ʃ 0 t b ( s ) d s , where a(s) is a positive continuous function such that ʃ 1 a ( s ) / s d s = and b(s) is quasi-increasing and l i m s b ( s ) = . Then the following statements for the Hardy-Littlewood maximal function Mf(x) are equivalent: (j) there exist positive constants c 1 and s 0 such that ʃ 1 s a ( t ) / t d t c 1 b ( c 1 s ) for all s s 0 ; (jj) there exist positive constants c 2 and c 3 such that ʃ 0 2 π Ψ ( ( c 2 ) / ( | | ) | ( x ) | ) d x c 3 + c 3 ʃ 0 2 π Φ ( 1 / ( | | ) ) M f ( x ) d x for all L 1 ( ) .

On a decomposition of non-negative Radon measures

Bérenger Akon Kpata (2019)

Archivum Mathematicum

We establish a decomposition of non-negative Radon measures on d which extends that obtained by Strichartz [6] in the setting of α -dimensional measures. As consequences, we deduce some well-known properties concerning the density of non-negative Radon measures. Furthermore, some properties of non-negative Radon measures having their Riesz potential in a Lebesgue space are obtained.

On a higher-order Hardy inequality

David Eric Edmunds, Jiří Rákosník (1999)

Mathematica Bohemica

The Hardy inequality Ω | u ( x ) | p d ( x ) - p x ¨ c Ω | u ( x ) | p x ¨ with d ( x ) = dist ( x , Ω ) holds for u C 0 ( Ω ) if Ω n is an open set with a sufficiently smooth boundary and if 1 < p < . P. Hajlasz proved the pointwise counterpart to this inequality involving a maximal function of Hardy-Littlewood type on the right hand side and, as a consequence, obtained the integral Hardy inequality. We extend these results for gradients of higher order and also for p = 1 .

On a weak type (1,1) inequality for a maximal conjugate function

Nakhlé Asmar, Stephen Montgomery-Smith (1997)

Studia Mathematica

In their celebrated paper [3], Burkholder, Gundy, and Silverstein used Brownian motion to derive a maximal function characterization of H p spaces for 0 < p < ∞. In the present paper, we show that the methods in [3] extend to higher dimensions and yield a dimension-free weak type (1,1) estimate for a conjugate function on the N-dimensional torus.

On boundedness properties of certain maximal operators

M. Menárguez (1995)

Colloquium Mathematicae

It is known that the weak type (1,1) for the Hardy-Littlewood maximal operator can be obtained from the weak type (1,1) over Dirac deltas. This theorem is due to M. de Guzmán. In this paper, we develop a technique that allows us to prove such a theorem for operators and measure spaces in which Guzmán's technique cannot be used.

Currently displaying 341 – 360 of 693