The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study the densities of the semigroup generated by the operator on the 3-dimensional Heisenberg group. We show that the 7th derivatives of the densities have a jump discontinuity. Outside the plane x=0 the densities are . We give explicit spectral decomposition of images of in representations.
Schwartz’s Theorem in spectral synthesis of continuous functions on the real is generalized to the Euclidean motion group. The rightsided analogue of Schwartz’s Theorem for the motion group is reduced to the study of some invariant subspaces of continuous functions on .
Let Hₙ be the (2n+1)-dimensional Heisenberg group, let p,q ≥ 1 be integers satisfying p+q=n, and let
,
where X₁,Y₁,...,Xₙ,Yₙ,T denotes the standard basis of the Lie algebra of Hₙ. We compute explicitly a relative fundamental solution for L.
On considère un immeuble de type ou , différents sous-ensembles de l’ensemble des sommets de et différents groupes d’automorphismes de , très fortement transitifs sur . On montre que l’algèbre des opérateurs -invariants agissant sur l’espace des fonctions sur est souvent non commutative (contrairement aux résultats classiques). Dans certains cas on décrit sa structure et on détermine ses fonctions radiales propres. On en déduit que la conjecture d’Helgason n’est pas toujours vérifiée...
Let ℒ be the sublaplacian on the Heisenberg group Hⁿ. A recent result of Müller and Stein shows that the operator is bounded on for all p satisfying |1/p - 1/2| < 1/(2n). In this paper we show that the same operator is bounded on in the bigger range |1/p - 1/2| < 1/(2n-1) if we consider only functions which are band limited in the central variable.
Currently displaying 1 –
16 of
16