Displaying 81 – 100 of 234

Showing per page

A Riemann-Hilbert problem with a vanishing coefficient and applications to Toeplitz operators

A. Perälä, J. A. Virtanen, L. Wolf (2013)

Concrete Operators

We study the homogeneous Riemann-Hilbert problem with a vanishing scalar-valued continuous coefficient. We characterize non-existence of nontrivial solutions in the case where the coefficient has its values along several rays starting from the origin. As a consequence, some results on injectivity and existence of eigenvalues of Toeplitz operators in Hardy spaces are obtained.

A singular initial value problem for the equation u ( n ) ( x ) = g ( u ( x ) )

Wojciech Mydlarczyk (1998)

Annales Polonici Mathematici

We consider the problem of the existence of positive solutions u to the problem u ( n ) ( x ) = g ( u ( x ) ) , u ( 0 ) = u ' ( 0 ) = . . . = u ( n - 1 ) ( 0 ) = 0 (g ≥ 0,x > 0, n ≥ 2). It is known that if g is nondecreasing then the Osgood condition δ 1 / s [ s / g ( s ) ] 1 / n d s < is necessary and sufficient for the existence of nontrivial solutions to the above problem. We give a similar condition for other classes of functions g.

A stability result for a class of nonlinear integrodifferential equations with L¹ kernels

Piermarco Cannarsa, Daniela Sforza (2008)

Applicationes Mathematicae

We study second order nonlinear integro-differential equations in Hilbert spaces with weakly singular convolution kernels obtaining energy estimates for the solutions, uniform in t. Then we show that the solutions decay exponentially at ∞ in the energy norm. Finally, we apply these results to a problem in viscoelasticity.

A -stable methods of high order for Volterra integral equations

Ľubor Malina (1975)

Aplikace matematiky

Method for numerical solution of Volterra integral equations, based on the O.I.M. methods, is suggested. It is known that the class of O.I.M. methods includes A -stable methods of arbitrary high order of asymptotic accuracy. In part 5, it is proved that these methods generate methods for numerical solution of Volterra equations which are also A -stable and of an arbitrarily high order. There is one advantage of the methods. Namely, they need no matrix inversion in the course of their numerical realization....

Currently displaying 81 – 100 of 234