The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 234

Showing per page

A certain integral-recurrence equation with discrete-continuous auto-convolution

Mircea I. Cîrnu (2011)

Archivum Mathematicum

Laplace transform and some of the author’s previous results about first order differential-recurrence equations with discrete auto-convolution are used to solve a new type of non-linear quadratic integral equation. This paper continues the author’s work from other articles in which are considered and solved new types of algebraic-differential or integral equations.

A discrepancy principle for Tikhonov regularization with approximately specified data

M. Thamban Nair, Eberhard Schock (1998)

Annales Polonici Mathematici

Many discrepancy principles are known for choosing the parameter α in the regularized operator equation ( T * T + α I ) x α δ = T * y δ , | y - y δ | δ , in order to approximate the minimal norm least-squares solution of the operator equation Tx = y. We consider a class of discrepancy principles for choosing the regularization parameter when T*T and T * y δ are approximated by Aₙ and z δ respectively with Aₙ not necessarily self-adjoint. This procedure generalizes the work of Engl and Neubauer (1985), and particular cases of the results are applicable...

A dispersion inequality in the Hankel setting

Saifallah Ghobber (2018)

Czechoslovak Mathematical Journal

The aim of this paper is to prove a quantitative version of Shapiro's uncertainty principle for orthonormal sequences in the setting of Gabor-Hankel theory.

A domain decomposition analysis for a two-scale linear transport problem

François Golse, Shi Jin, C. David Levermore (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a domain decomposition theory on an interface problem for the linear transport equation between a diffusive and a non-diffusive region. To leading order, i.e. up to an error of the order of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the interface at the next order of approximation. In particular, our algorithm avoids iterating...

A Domain Decomposition Analysis for a Two-Scale Linear Transport Problem

François Golse, Shi Jin, C. David Levermore (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a domain decomposition theory on an interface problem for the linear transport equation between a diffusive and a non-diffusive region. To leading order, i.e. up to an error of the order of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the interface at the next order of approximation. In particular, our algorithm avoids iterating...

Currently displaying 1 – 20 of 234

Page 1 Next