The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 16 of 16

Showing per page

Vector integral equations with discontinuous right-hand side

Filippo Cammaroto, Paolo Cubiotti (1999)

Commentationes Mathematicae Universitatis Carolinae

We deal with the integral equation u ( t ) = f ( I g ( t , z ) u ( z ) d z ) , with t I = [ 0 , 1 ] , f : 𝐑 n 𝐑 n and g : I × I [ 0 , + [ . We prove an existence theorem for solutions u L ( I , 𝐑 n ) where the function f is not assumed to be continuous, extending a result previously obtained for the case n = 1 .

Volterra integral inclusions via Henstock-Kurzweil-Pettis integral

Bianca Satco (2006)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we prove the existence of continuous solutions of a Volterra integral inclusion involving the Henstock-Kurzweil-Pettis integral. Since this kind of integral is more general than the Bochner, Pettis and Henstock integrals, our result extends many of the results previously obtained in the single-valued setting or in the set-valued case.

Currently displaying 1 – 16 of 16

Page 1