The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 82

Showing per page

New conditions for the existence of non trivial solutions to some Volterra equations.

W. Okrasinski (1990)

Extracta Mathematicae

We consider the following Volterra equation:(1)       u(x) = ∫0x k(x-s) g(u(s)) ds,   where,k: [0, δ0] → R is an increasing absolutely continuous function such thatk(0) = 0g: [0,+ ∞) → [0,+ ∞) is an increasing absolutely continuous function such that g(0) = 0 and g(u)/u → ∞ as u → 0+ (see [3]).Let us note that (1) has always the trivial solution u = 0.Some necessary and sufficient conditions for the existence of nontrivial solutions to (1) with k(x) = xα - 1 (α>0) are given in [1], [2] and...

New spectral criteria for almost periodic solutions of evolution equations

Toshiki Naito, Nguyen Van Minh, Jong Son Shin (2001)

Studia Mathematica

We present a general spectral decomposition technique for bounded solutions to inhomogeneous linear periodic evolution equations of the form ẋ = A(t)x + f(t) (*), with f having precompact range, which is then applied to find new spectral criteria for the existence of almost periodic solutions with specific spectral properties in the resonant case where e i s p ( f ) ¯ may intersect the spectrum of the monodromy operator P of (*) (here sp(f) denotes the Carleman spectrum of f). We show that if (*) has a bounded...

Non-autonomous implicit integral equations with discontinuous right-hand side

Giovanni Anello, Paolo Cubiotti (2004)

Commentationes Mathematicae Universitatis Carolinae

We deal with the implicit integral equation h ( u ( t ) ) = f ( t , I g ( t , z ) u ( z ) d z ) for a.a. t I , where I : = [ 0 , 1 ] and where f : I × [ 0 , λ ] , g : I × I [ 0 , + [ and h : ] 0 , + [ . We prove an existence theorem for solutions u L s ( I ) where the contituity of f with respect to the second variable is not assumed.

Non-autonomous vector integral equations with discontinuous right-hand side

Paolo Cubiotti (2001)

Commentationes Mathematicae Universitatis Carolinae

We deal with the integral equation u ( t ) = f ( t , I g ( t , z ) u ( z ) d z ) , with t I : = [ 0 , 1 ] , f : I × n n and g : I × I [ 0 , + [ . We prove an existence theorem for solutions u L s ( I , n ) , s ] 1 , + ] , where f is not assumed to be continuous in the second variable. Our result extends a result recently obtained for the special case where f does not depend explicitly on the first variable t I .

Currently displaying 1 – 20 of 82

Page 1 Next