The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 361 –
380 of
444
Considering jets, or functions, belonging to some strongly non-quasianalytic Carleman class on compact subsets of , we extend them to the whole space with a loss of Carleman regularity. This loss is related to geometric conditions refining Łojasiewicz’s “regular separation” or Whitney’s “property (P)”.
Let 𝓔 be a Banach space contained in a Hilbert space 𝓛. Assume that the inclusion is continuous with dense range. Following the terminology of Gohberg and Zambickiĭ, we say that a bounded operator on 𝓔 is a proper operator if it admits an adjoint with respect to the inner product of 𝓛. A proper operator which is self-adjoint with respect to the inner product of 𝓛 is called symmetrizable. By a proper subspace 𝓢 we mean a closed subspace of 𝓔 which is the range of a proper projection. Furthermore,...
In this brief note, we see that if is a proper uniform algebra on a compact Hausdorff space , then is flat.
We prove the existence of complex Banach spaces X such that every element F in the bidual X** of X has a unique best approximation π(F) in X, the equality ∥F∥ = ∥π (F)∥ + ∥F - π (F)∥ holds for all F in X**, but the mapping π is not linear.
Tauberian operators, which appeared in response to a problem in summability [GaW, KW] have found application in several situations: factorization of operators [DFJP], preservation of isomorphic properties of Banach spaces [N, NR], equivalence between the Radon-Nikodym property and the Krein-Milman property [Sch], and generalized Fredholm operators [Ta, Y].This paper is a survey of the main properties and applications of Tauberian operators.
The degenerate Cauchy problem in a Banach space is studied on the basis of properties of an abstract analytical function, satisfying the Hilbert identity, and a related pair of operators A, B.
For all convolution algebras L 1[0, 1); L loc1 and A(ω) = ∩n L 1(ωn), the derivations are of the form D μ f = Xf * μ for suitable measures μ, where (Xf)(t) = tf(t). We describe the (weakly) compact as well as the (weakly) Montel derivations on these algebras in terms of properties of the measure μ. Moreover, for all these algebras we show that the extension of D μ to a natural dual space is weak-star continuous.
In the present note, we characterize the pervasive, analytic, integrity domain and the antisymmetric function algebras respectively, defined on a compact Hausdorff space , in terms of their orthogonal measures on .
The concept of lushness, introduced recently, is a Banach space property, which ensures that the space has numerical index 1. We prove that for Asplund spaces lushness is actually equivalent to having numerical index 1. We prove that every separable Banach space containing an isomorphic copy of c₀ can be renormed equivalently to be lush, and thus to have numerical index 1. The rest of the paper is devoted to the study of lushness just as a property of Banach spaces. We prove that lushness is separably...
An Orlicz-Pettis type property for vector measures and also the “Uniform Boundedness Principle” are shown to fail without local convexity assumption. The author asks under which generalized convexity hypotheses these properties remain true. This problem is expressed in terms of barrelledness type conditions.
Let n ≥ 2 and , where
,
, , k < n. We prove that for some s,s’ the space is a multiplicative algebra.
Currently displaying 361 –
380 of
444