On some classes of infinitely decomposable Sobolev-Schwartz test functions
In this paper the spaces of type Sobolev-Morrey-W p,a,г,τl(Q,G)-are constructed, the differential properties are studied and it is proved that the functions from these spaces satisfy Holder's condition, in the case, if the domain G∋R n satisfies the flexible λ-horn condition.
For 1 ≤ q ≤ α ≤ p ≤ ∞, is a complex Banach space which is continuously included in the Wiener amalgam space and contains the Lebesgue space . We study the closure in of the space of test functions (infinitely differentiable and with compact support in ) and obtain norm inequalities for Riesz potential operators and Riesz transforms in these spaces. We also introduce the Sobolev type space (a subspace of a Morrey-Sobolev space, but a superspace of the classical Sobolev space ) and obtain...
We investigate the multiplicative properties of the spaces As in the case of the classical Sobolev spaces this space does not form an algebra. We investigate instead the space , more precisely a subspace of it formed by products of solutions of the homogeneous wave equation with data in .
For , precise conditions on the parameters are given under which the particular superposition operator is a bounded map in the Besov space . The proofs rely on linear spline approximation theory.
The purpose of this paper is to give a characterization of the closure of the Lizorkin space in spaces of Beppo Levi type. As preparations for the proof, we establish the invariance of the Lizorkin space, and give local integral representations for smooth functions.
Motivated by recent developments on calculus in metric measure spaces , we prove a general duality principle between Fuglede’s notion [15] of -modulus for families of finite Borel measures in and probability measures with barycenter in , with dual exponent of . We apply this general duality principle to study null sets for families of parametric and non-parametric curves in . In the final part of the paper we provide a new proof, independent of optimal transportation, of the equivalence...