Displaying 681 – 700 of 1286

Showing per page

On the lower semicontinuity of certain integral functionals

Ennio De Giorgi, Giuseppe Buttazzo, Gianni Dal Maso (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si dimostra che il funzionale Ω f ( u , D u ) d x è semicontinuo inferiormente su W l o c 1 , 1 ( Ω ) , rispetto alla topologia indotta da L l o c 1 ( Ω ) , qualora l’integrando f ( s , p ) sia una funzione non-negativa, misurabile in s , convessa in p , limitata nell’intorno dei punti del tipo ( s , 0 ) , e tale che la funzione s f ( s , 0 ) sia semicontinua inferiormente su 𝐑 .

On the regularity of bilinear maximal operator

Feng Liu, Guoru Wang (2023)

Czechoslovak Mathematical Journal

We study the regularity properties of bilinear maximal operator. Some new bounds and continuity for the above operators are established on the Sobolev spaces, Triebel-Lizorkin spaces and Besov spaces. In addition, the quasicontinuity and approximate differentiability of the bilinear maximal function are also obtained.

On the regularity of the one-sided Hardy-Littlewood maximal functions

Feng Liu, Suzhen Mao (2017)

Czechoslovak Mathematical Journal

In this paper we study the regularity properties of the one-dimensional one-sided Hardy-Littlewood maximal operators + and - . More precisely, we prove that + and - map W 1 , p ( ) W 1 , p ( ) with 1 < p < , boundedly and continuously. In addition, we show that the discrete versions M + and M - map BV ( ) BV ( ) boundedly and map l 1 ( ) BV ( ) continuously. Specially, we obtain the sharp variation inequalities of M + and M - , that is, Var ( M + ( f ) ) Var ( f ) and Var ( M - ( f ) ) Var ( f ) if f BV ( ) , where Var ( f ) is the total variation of f on and BV ( ) is the set of all functions f : satisfying Var ( f ) < .

Currently displaying 681 – 700 of 1286