On the Sobolev class and quasiregularity.
We extend to the case 1 < p the results obtained by Geymonat and Krasucki for p = 2 on the characterization of the traces of W2,p(Ω) for a bounded Lipschitz domain.
We consider and study several weak formulations of the Hessian determinant, arising by formal integration by parts. Our main concern are their continuity properties. We also compare them with the Hessian measure.
Nous établissons des résultats d’interpolation non-standards entre les espaces de Besov et les espaces et , avec des applications aux lemmes de régularité en moyenne et aux inégalités de type Gagliardo-Nirenberg. La preuve de ces résultats utilise les décompositions dans des bases d’ondelettes.