The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
1286
Sobolev’s original definition of his spaces is revisited. It only assumed that is a domain. With elementary methods, essentially based on Poincare’s inequality for balls (or cubes), the existence of intermediate derivates of functions with respect to appropriate norms, and equivalence of these norms is proved.
Let be a bounded open set in , . In a well-known paper Indiana Univ. Math. J., 20, 1077–1092 (1971) Moser found the smallest value of such that
We extend this result to the situation in which the underlying space is replaced by the generalized Zygmund space
We survey results from the paper [CPS] in which we developed a new sharp iteration method and applied it to show that the optimal Sobolev embeddings of any order can be derived from isoperimetric inequalities. We prove thereby that the well-known link between first-order Sobolev embeddings and isoperimetric inequalities translates to embeddings of any order, a fact that had not been known before. We show a general reduction principle that reduces Sobolev type inequalities of any order involving...
We prove an approximation lemma on (stratified) homogeneous groups that allows one to approximate a function in the non-isotropic Sobolev space by functions, generalizing a result of Bourgain–Brezis. We then use this to obtain a Gagliardo–Nirenberg inequality for on the Heisenberg group .
A weak molecule condition is given for the Triebel-Lizorkin spaces Ḟ_p^{α,q}, with 0 < α < 1 and 1 < p, q < ∞. As an easy corollary, one may deduce, by atomic-molecular methods, a Triebel-Lizorkin space "T1" Theorem of Han and Sawyer, and Han, Jawerth, Taibleson and Weiss, for Calderón-Zygmund kernels K(x,y) which are not assumed to satisfy any regularity condition in the y variable.
The classical Whitney extension theorem states that every function in Lip, , closed, , a non-negative integer, can be extended to a function in Lip. Her Lip stands for the class of functions which on have continuous partial derivatives up to order satisfying certain Lipschitz conditions in the supremum norm. We formulate and prove a similar theorem in the -norm.The restrictions to , , of the Bessel potential spaces in and the Besov or generalized Lipschitz spaces in have been...
A non-homogeneous Hardy-like inequality has recently been found to be closely related to the knowledge of the lowest eigenvalue of a large class of Dirac operators in the gap of their continuous spectrum.
Currently displaying 61 –
80 of
1286