The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 10 of 10

Showing per page

Podal subspaces on the unit polydisk

Kunyu Guo (2002)

Studia Mathematica

Beurling's classical theorem gives a complete characterization of all invariant subspaces in the Hardy space H²(D). To generalize the theorem to higher dimensions, one is naturally led to determining the structure of each unitary equivalence (resp. similarity) class. This, in turn, requires finding podal (resp. s-podal) points in unitary (resp. similarity) orbits. In this note, we find that H-outer (resp. G-outer) functions play an important role in finding podal (resp. s-podal) points. By the methods...

Pointwise multiplication operators on weighted Banach spaces of analytic functions

J. Bonet, P. Domański, M. Lindström (1999)

Studia Mathematica

For a wide class of weights we find the approximative point spectrum and the essential spectrum of the pointwise multiplication operator M φ , M φ ( f ) = φ f , on the weighted Banach spaces of analytic functions on the disc with the sup-norm. Thus we characterize when M φ ' is Fredholm or is an into isomorphism. We also study cyclic phenomena for the adjoint map M φ ' .

Projections on Hardy spaces in the Lie ball.

David Bekollé (1994)

Publicacions Matemàtiques

On the Lie ball w of Cn, n ≥ 3, we prove that for all p ∈ [1,∞), p ≠ 2, the Hardy space Hp(w) is an uncomplemented subspace of the Lebesgue space Lp(∂0w, dσ), where ∂0w denotes the Shilov boundary of w and dσ is a normalized invariant measure of ∂0w.

Currently displaying 1 – 10 of 10

Page 1