Disjointly strictly-singular operators in Banach lattices
The purpose of this paper is to show that if σ is the maximal spectral type of Chacon’s transformation, then for any d ≠ d’ we have . First, we establish the disjointness of convolutions of the maximal spectral type for the class of dynamical systems that satisfy a certain algebraic condition. Then we show that Chacon’s automorphism belongs to this class.
2000 Mathematics Subject Classification: 35L15, 35B40, 47F05.We prove dispersive estimates for solutions to the wave equation with a real-valued potential V.
Composition operators Cφ induced by a selfmap φ of some set S are operators acting on a space consisting of functions on S by composition to the right with φ, that is Cφf = f º φ. In this paper, we consider the Hilbert Hardy space H2 on the open unit disk and find exact formulas for distances ||Cφ - Cψ|| between composition operators. The selfmaps φ and ψ involved in those formulas are constant, inner, or analytic selfmaps of the unit disk fixing the origin.
For different reasons it is very useful to have at one’s disposal a duality formula for the fractional powers of the Laplacean, namely, , α ∈ ℂ, for ϕ belonging to a suitable function space and u to its topological dual. Unfortunately, this formula makes no sense in the classical spaces of distributions. For this reason we introduce a new space of distributions where the above formula can be established. Finally, we apply this distributional point of view on the fractional powers of the Laplacean...