Displaying 2621 – 2640 of 11160

Showing per page

Disjointness of the convolutionsfor Chacon's automorphism

A. Prikhod'ko, V. Ryzhikov (2000)

Colloquium Mathematicum

The purpose of this paper is to show that if σ is the maximal spectral type of Chacon’s transformation, then for any d ≠ d’ we have σ * d σ * d ' . First, we establish the disjointness of convolutions of the maximal spectral type for the class of dynamical systems that satisfy a certain algebraic condition. Then we show that Chacon’s automorphism belongs to this class.

Distances between composition operators.

Valentin Matache (2007)

Extracta Mathematicae

Composition operators Cφ induced by a selfmap φ of some set S are operators acting on a space consisting of functions on S by composition to the right with φ, that is Cφf = f º φ. In this paper, we consider the Hilbert Hardy space H2 on the open unit disk and find exact formulas for distances ||Cφ - Cψ|| between composition operators. The selfmaps φ and ψ involved in those formulas are constant, inner, or analytic selfmaps of the unit disk fixing the origin.

Distributional fractional powers of the Laplacean. Riesz potentials

Celso Martínez, Miguel Sanzi, Francisco Periago (1999)

Studia Mathematica

For different reasons it is very useful to have at one’s disposal a duality formula for the fractional powers of the Laplacean, namely, ( ( - Δ ) α u , ϕ ) = ( u , ( - Δ ) α ϕ ) , α ∈ ℂ, for ϕ belonging to a suitable function space and u to its topological dual. Unfortunately, this formula makes no sense in the classical spaces of distributions. For this reason we introduce a new space of distributions where the above formula can be established. Finally, we apply this distributional point of view on the fractional powers of the Laplacean...

Currently displaying 2621 – 2640 of 11160