The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 3381 – 3400 of 11160

Showing per page

Factorizing multilinear operators on Banach spaces, C*-algebras and JB*-triples

Carlos Palazuelos, Antonio M. Peralta, Ignacio Villanueva (2009)

Studia Mathematica

In recent papers, the Right and the Strong* topologies have been introduced and studied on general Banach spaces. We characterize different types of continuity for multilinear operators (joint, uniform, etc.) with respect to the above topologies. We also study the relations between them. Finally, in the last section, we relate the joint Strong*-to-norm continuity of a multilinear operator T defined on C*-algebras (respectively, JB*-triples) to C*-summability (respectively, JB*-triple-summability)....

Failure of analytic hypoellipticity in a class of differential operators

Ovidiu Costin, Rodica D. Costin (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

For the hypoelliptic differential operators P = x 2 + x k y - x l t 2 introduced by T. Hoshiro, generalizing a class of M. Christ, in the cases of k and l left open in the analysis, the operators P also fail to be analytic hypoelliptic (except for ( k , l ) = ( 0 , 1 ) ), in accordance with Treves’ conjecture. The proof is constructive, suitable for generalization, and relies on evaluating a family of eigenvalues of a non-self-adjoint operator.

Failure of Nehari's theorem for multiplicative Hankel forms in Schatten classes

Ole Fredrik Brevig, Karl-Mikael Perfekt (2015)

Studia Mathematica

Ortega-Cerdà-Seip demonstrated that there are bounded multiplicative Hankel forms which do not arise from bounded symbols. On the other hand, when such a form is in the Hilbert-Schmidt class ₂, Helson showed that it has a bounded symbol. The present work investigates forms belonging to the Schatten classes between these two cases. It is shown that for every p > ( 1 - l o g π / l o g 4 ) - 1 there exist multiplicative Hankel forms in the Schatten class p which lack bounded symbols. The lower bound on p is in a certain sense optimal...

Faisceaux d'espaces de Sobolev et principes du minimum

Denis Feyel, A. de La Pradelle (1975)

Annales de l'institut Fourier

On montre que le faisceau des sursolutions locales dans W loc 2 d’un certain opérateur elliptique L est maximal pour un principe du minimum adapté aux espaces de Sobolev. La continuité de la réduite variationnelle des éléments continus permet alors d’étudier des représentants s.c.i.

Fegen und Dünnheit mit Anwendungen auf die Laplace-und Wärmeleitungsgleichung

Wolfhard Hansen (1971)

Annales de l'institut Fourier

Several properties of balayage of measures in harmonic spaces are studied. In particular, characterisations of thinness of subsets are given. For the heat equation the following result is obtained: suppose that E = R m + 1 is given the presheaf of solutions of i = 1 m u x i = u x m + 1 and B is a subset of R m × [ - , 0 ] satisfying { ( α x , α 2 t ) : ( x , t ) B , x R m , t R } B for α > 0 arbitrarily small. Then B is thin at 0 if and only if B is polar. Similar result for the Laplace equation. At last the reduced of measures is defined and several approximation theorems on reducing and balayage...

Fejér–Riesz factorizations and the structure of bivariate polynomials orthogonal on the bi-circle

Jeffrey S. Geronimo, Plamen Iliev (2014)

Journal of the European Mathematical Society

We give a complete characterization of the positive trigonometric polynomials Q ( θ , ϕ ) on the bi-circle, which can be factored as Q ( θ , ϕ ) = | p ( e i θ , e i ϕ ) | 2 where p ( z , w ) is a polynomial nonzero for | z | = 1 and | w | 1 . The conditions are in terms of recurrence coefficients associated with the polynomials in lexicographical and reverse lexicographical ordering orthogonal with respect to the weight 1 4 π 2 Q ( θ , ϕ ) on the bi-circle. We use this result to describe how specific factorizations of weights on the bi-circle can be translated into identities relating...

Feller semigroups and degenerate elliptic operators with Wentzell boundary conditions

Kazuaki Taira, Angelo Favini, Silvia Romanelli (2001)

Studia Mathematica

This paper is devoted to the functional analytic approach to the problem of construction of Feller semigroups with Wentzell boundary conditions in the characteristic case. Our results may be stated as follows: We can construct Feller semigroups corresponding to a diffusion phenomenon including absorption, reflection, viscosity, diffusion along the boundary and jump at each point of the boundary.

Fermi Golden Rule, Feshbach Method and embedded point spectrum

Jan Dereziński (1998/1999)

Séminaire Équations aux dérivées partielles

A method to study the embedded point spectrum of self-adjoint operators is described. The method combines the Mourre theory and the Limiting Absorption Principle with the Feshbach Projection Method. A more complete description of this method is contained in a joint paper with V. Jak s ˇ ić, where it is applied to a study of embedded point spectrum of Pauli-Fierz Hamiltonians.

Finding linking sets.

Schechter, Martin, Tintarev, Kyril (2006)

International Journal of Mathematics and Mathematical Sciences

Currently displaying 3381 – 3400 of 11160