The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 4501 –
4520 of
11160
In analogy to the classical isomorphism between ((ℝⁿ), and (resp. and ), we show that a large class of moderate linear mappings acting between the space of compactly supported generalized functions and (ℝⁿ) of generalized functions (resp. the space of Colombeau rapidly decreasing generalized functions and the space of temperate ones) admits generalized integral representations, with kernels belonging to specific regular subspaces of (resp. ). The main novelty is to use accelerated...
A Coburn theorem says that a nonzero Toeplitz operator on the Hardy space is one-to-one or its adjoint operator is one-to-one. We study the corresponding problem for certain Toeplitz operators on the Bergman space.
We investigate the structure of the set of solutions of the Cauchy problem x’ = f(t,x), x(0) = x₀ in Banach spaces. If f satisfies a compactness condition expressed in terms of measures of weak noncompactness, and f is Pettis-integrable, then the set of pseudo-solutions of this problem is a continuum in , the space of all continuous functions from I to E endowed with the weak topology. Under some additional assumptions these solutions are, in fact, weak solutions or strong Carathéodory solutions,...
This work is concerned with the existence and regularity of solutions to the Neumann problem associated with a Ornstein–Uhlenbeck operator on a bounded and smooth convex set K of a Hilbert space H. This problem is related to the reflection problem associated with a stochastic differential equation in K.
Replacing the gaussian semigroup in the heat kernel estimates by the Ornstein-Uhlenbeck semigroup on , we define the notion of Kolmogorov kernel estimates. This allows us to show that under Dirichlet boundary conditions Ornstein-Uhlenbeck operators are generators of consistent, positive, (quasi-) contractive -semigroups on for all and for every domain . For exterior domains with sufficiently smooth boundary a result on the location of the spectrum of these operators is also given.
If A is a normed power-associative complex algebra such that the selfadjoint part is normally ordered with respect to some order, then the Korovkin closure (see the introduction for definitions) of T ∪ {t* ∘ t| t ∈ T} contains J*(T) for any subset T of A. This can be applied to C*-algebras, minimal norm ideals on a Hilbert space, and to H*-algebras. For bounded H*-algebras and dual C*-algebras there is even equality. This answers a question posed in [1].
Let {T n} be a sequence of linear operators on C[0,1], satisfying that {T n (e i)} converge in C[0,1] (not necessarily to e i) for i = 0,1,2, where e i = t i. We prove Korovkin-type theorem and give quantitative results on C 2[0,1] and C[0,1] for such sequences. Furthermore, we define King’s type q-Bernstein operator and give quantitative results for the approximation properties of such operators.
Currently displaying 4501 –
4520 of
11160