The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 4501 – 4520 of 11160

Showing per page

Kernel theorems in spaces of generalized functions

Antoine Delcroix (2010)

Banach Center Publications

In analogy to the classical isomorphism between ((ℝⁿ), ' ( m ) ) and ' ( m + n ) (resp. ( ( ) , ' ( m ) ) and ' ( m + n ) ), we show that a large class of moderate linear mappings acting between the space C ( ) of compactly supported generalized functions and (ℝⁿ) of generalized functions (resp. the space ( ) of Colombeau rapidly decreasing generalized functions and the space τ ( ) of temperate ones) admits generalized integral representations, with kernels belonging to specific regular subspaces of ( m + n ) (resp. τ ( m + n ) ). The main novelty is to use accelerated...

Kernels of Toeplitz operators on the Bergman space

Young Joo Lee (2023)

Czechoslovak Mathematical Journal

A Coburn theorem says that a nonzero Toeplitz operator on the Hardy space is one-to-one or its adjoint operator is one-to-one. We study the corresponding problem for certain Toeplitz operators on the Bergman space.

Kneser's theorems for strong, weak and pseudo-solutions of ordinary differential equations in Banach spaces

Mieczysław Cichoń, Ireneusz Kubiaczyk (1995)

Annales Polonici Mathematici

We investigate the structure of the set of solutions of the Cauchy problem x’ = f(t,x), x(0) = x₀ in Banach spaces. If f satisfies a compactness condition expressed in terms of measures of weak noncompactness, and f is Pettis-integrable, then the set of pseudo-solutions of this problem is a continuum in C w ( I , E ) , the space of all continuous functions from I to E endowed with the weak topology. Under some additional assumptions these solutions are, in fact, weak solutions or strong Carathéodory solutions,...

Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space II

Viorel Barbu, Giuseppe Da Prato, Luciano Tubaro (2011)

Annales de l'I.H.P. Probabilités et statistiques

This work is concerned with the existence and regularity of solutions to the Neumann problem associated with a Ornstein–Uhlenbeck operator on a bounded and smooth convex set K of a Hilbert space H. This problem is related to the reflection problem associated with a stochastic differential equation in K.

Kolmogorov kernel estimates for the Ornstein-Uhlenbeck operator

Robert Haller-Dintelmann, Julian Wiedl (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Replacing the gaussian semigroup in the heat kernel estimates by the Ornstein-Uhlenbeck semigroup on d , we define the notion of Kolmogorov kernel estimates. This allows us to show that under Dirichlet boundary conditions Ornstein-Uhlenbeck operators are generators of consistent, positive, (quasi-) contractive C 0 -semigroups on L p ( Ω ) for all 1 p < and for every domain Ω d . For exterior domains with sufficiently smooth boundary a result on the location of the spectrum of these operators is also given.

Korovkin theory in normed algebras

Ferdinand Beckhoff (1991)

Studia Mathematica

If A is a normed power-associative complex algebra such that the selfadjoint part is normally ordered with respect to some order, then the Korovkin closure (see the introduction for definitions) of T ∪ {t* ∘ t| t ∈ T} contains J*(T) for any subset T of A. This can be applied to C*-algebras, minimal norm ideals on a Hilbert space, and to H*-algebras. For bounded H*-algebras and dual C*-algebras there is even equality. This answers a question posed in [1].

Korovkin-type theorems and applications

Nazim Mahmudov (2009)

Open Mathematics

Let {T n} be a sequence of linear operators on C[0,1], satisfying that {T n (e i)} converge in C[0,1] (not necessarily to e i) for i = 0,1,2, where e i = t i. We prove Korovkin-type theorem and give quantitative results on C 2[0,1] and C[0,1] for such sequences. Furthermore, we define King’s type q-Bernstein operator and give quantitative results for the approximation properties of such operators.

Currently displaying 4501 – 4520 of 11160