The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 4981 –
5000 of
11160
Let t be a regular operator between Hilbert C*-modules and be its Moore-Penrose inverse. We investigate the Moore-Penrose invertibility of the Gram operator t*t. More precisely, we study some conditions ensuring that and . As an application, we get some results for densely defined closed operators on Hilbert C*-modules over C*-algebras of compact operators.
In [JKP] and its sequel [FPS] the authors initiated a program whose (announced) goal is to eventually show that no operator in ℒ(ℋ) is orbit-transitive. In [JKP] it is shown, for example, that if T ∈ ℒ(ℋ) and the essential (Calkin) norm of T is equal to its essential spectral radius, then no compact perturbation of T is orbit-transitive, and in [FPS] this result is extended to say that no element of this same class of operators is weakly orbit-transitive. In the present note we show that no compact...
Let 1 < p < ∞, q = p/(p-1) and for define , x > 0. Moser’s Inequality states that there is a constant such that where is the unit ball of . Moreover, the value a = 1 is sharp. We observe that f where the integral operator has a simple kernel K. We consider the question of for what kernels K(t,x), 0 ≤ t, x < ∞, this result can be extended, and proceed to discuss this when K is non-negative and homogeneous of degree -1. A sufficient condition on K is found for the analogue...
Let G be a second countable locally compact nilpotent group. It is shown that for every norm completely mixing (n.c.m.) random walk μ, αμ + (1-α)ν is n.c.m. for 0 < α ≤ 1, ν ∈ P(G). In particular, a generic stochastic convolution operator on G is n.c.m.
Currently displaying 4981 –
5000 of
11160