The search session has expired. Please query the service again.

Displaying 621 – 640 of 1124

Showing per page

Spectral asymptotics for manifolds with cylindrical ends

Tanya Christiansen, Maciej Zworski (1995)

Annales de l'institut Fourier

The spectrum of the Laplacian on manifolds with cylindrical ends consists of continuous spectrum of locally finite multiplicity and embedded eigenvalues. We prove a Weyl-type asymptotic formula for the sum of the number of embedded eigenvalues and the scattering phase. In particular, we obtain the optimal upper bound on the number of embedded eigenvalues less than or equal to r 2 , 𝒪 ( r n ) , where n is the dimension of the manifold.

Spectral decompositions and harmonic analysis on UMD spaces

Earl Berkson, T. Gillespie (1994)

Studia Mathematica

We develop a spectral-theoretic harmonic analysis for an arbitrary UMD space X. Our approach utilizes the spectral decomposability of X and the multiplier theory for L X p to provide on the space X itself analogues of the classical themes embodied in the Littlewood-Paley Theorem, the Strong Marcinkiewicz Multiplier Theorem, and the M. Riesz Property. In particular, it is shown by spectral integration that classical Marcinkiewicz multipliers have associated transforms acting on X.

Spectral decompositions, ergodic averages, and the Hilbert transform

Earl Berkson, T. A. Gillespie (2001)

Studia Mathematica

Let U be a trigonometrically well-bounded operator on a Banach space , and denote by ( U ) n = 1 the sequence of (C,2) weighted discrete ergodic averages of U, that is, ( U ) = 1 / n 0 < | k | n ( 1 - | k | / ( n + 1 ) ) U k . We show that this sequence ( U ) n = 1 of weighted ergodic averages converges in the strong operator topology to an idempotent operator whose range is x ∈ : Ux = x, and whose null space is the closure of (I - U). This result expands the scope of the traditional Ergodic Theorem, and thereby serves as a link between Banach space spectral theory and...

Spectral distribution of the free Jacobi process associated with one projection

Nizar Demni, Taoufik Hmidi (2014)

Colloquium Mathematicae

Given an orthogonal projection P and a free unitary Brownian motion Y = ( Y ) t 0 in a W*-non commutative probability space such that Y and P are *-free in Voiculescu’s sense, we study the spectral distribution νₜ of Jₜ = PYₜPYₜ*P in the compressed space. To this end, we focus on the spectral distribution μₜ of the unitary operator SYₜSYₜ*, S = 2P - 1, whose moments are related to those of Jₜ via a binomial-type expansion already obtained by Demni et al. [Indiana Univ. Math. J. 61 (2012)]. In this connection,...

Spectral estimates of vibration frequencies of anisotropic beams

Luca Sabatini (2023)

Applications of Mathematics

The use of one theorem of spectral analysis proved by Bordoni on a model of linear anisotropic beam proposed by the author allows the determination of the variation range of vibration frequencies of a beam in two typical restraint conditions. The proposed method is very general and allows its use on a very wide set of problems of engineering practice and mathematical physics.

Spectral factorization of measurable rectangular matrix functions and the vector-valued Riemann problem.

Marek Rakowski, Ilya Spitkovsky (1996)

Revista Matemática Iberoamericana

We define spectral factorization in Lp (or a generalized Wiener-Hopf factorization) of a measurable singular matrix function on a simple closed rectifiable contour Γ. Such factorization has the same uniqueness properties as in the nonsingular case. We discuss basic properties of the vector valued Riemann problem whose coefficient takes singular values almost everywhere on Γ. In particular, we introduce defect numbers for this problem which agree with the usual defect numbers in the case of a nonsingular...

Spectral gap lower bound for the one-dimensional fractional Schrödinger operator in the interval

Kamil Kaleta (2012)

Studia Mathematica

We prove a uniform lower bound for the difference λ₂ - λ₁ between the first two eigenvalues of the fractional Schrödinger operator ( - Δ ) α / 2 + V , α ∈ (1,2), with a symmetric single-well potential V in a bounded interval (a,b), which is related to the Feynman-Kac semigroup of the symmetric α-stable process killed upon leaving (a,b). “Uniform” means that the positive constant C α appearing in our estimate λ - λ C α ( b - a ) - α is independent of the potential V. In the general case of α ∈ (0,2), we also find a uniform lower bound for...

Currently displaying 621 – 640 of 1124