The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let T₁,...,Tₙ be bounded linear operators on a complex Hilbert space H. Then there are compact operators K₁,...,Kₙ ∈ B(H) such that the closure of the joint numerical range of the n-tuple (T₁-K₁,...,Tₙ-Kₙ) equals the joint essential numerical range of (T₁,...,Tₙ). This generalizes the corresponding result for n = 1. We also show that if S ∈ B(H) and n ∈ ℕ then there exists a compact operator K ∈ B(H) such that . This generalizes results of C. L. Olsen.
Let W(A) and be the joint numerical range and the joint essential numerical range of an m-tuple of self-adjoint operators A = (A₁, ..., Aₘ) acting on an infinite-dimensional Hilbert space. It is shown that is always convex and admits many equivalent formulations. In particular, for any fixed i ∈ 1, ..., m, can be obtained as the intersection of all sets of the form
,
where F = F* has finite rank. Moreover, the closure cl(W(A)) of W(A) is always star-shaped with the elements in as star centers....
We study the numerical radius of Lipschitz operators on Banach spaces. We give its basic properties. Our main result is a characterization of finite-dimensional real Banach spaces with Lipschitz numerical index 1. We also explicitly compute the Lipschitz numerical index of some classical Banach spaces.
Currently displaying 81 –
89 of
89