The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be the product of finite groups each having order and let be the probability measure which takes the value on each element of . In this paper we shall describe the point spectrum of in and the corresponding eigenspaces. In particular we shall see that the point spectrum occurs only for suitable choices of the numbers . We also compute the continuous spectrum of in in several cases. A family of irreducible representations of , parametrized on the continuous spectrum of ,...
For 0 ≤ α < 1, an operator U ∈ L(X,Y) is called a rank α operator if implies Uxₙ → Ux in norm. We give some results on rank α operators, including an interpolation result and a characterization of rank α operators U: C(T,X) → Y in terms of their representing measures.
We prove that there does not exist a uniformly continuous retraction from the space of continuous vector fields onto the subspace of vector fields whose divergence vanishes in the distributional sense. We then generalise this result using the concept of -charges, introduced by De Pauw, Moonens, and Pfeffer: on any subset satisfying a mild geometric condition, there is no uniformly continuous representation operator for -charges in .
Currently displaying 1 –
13 of
13