Displaying 301 – 320 of 659

Showing per page

On continuous composition operators

Wilhelmina Smajdor (2010)

Annales Polonici Mathematici

Let I ⊂ ℝ be an interval, Y be a normed linear space and Z be a Banach space. We investigate the Banach space Lip₂(I,Z) of all functions ψ: I → Z such that M ψ : = s u p | | [ r , s , t ; ψ ] | | : r < s < t , r , s , t I < , where [r,s,t;ψ]:= ((s-r)ψ(t)+(t-s)ψ(r)-(t-r)ψ(s))/((t-r)(t-s)(s-r)). We show that ψ ∈ Lip₂(I,Z) if and only if ψ is differentiable and its derivative ψ’ is Lipschitzian. Suppose the composition operator N generated by h: I × Y → Z, (Nφ)(t):= h(t,φ(t)), maps the set (I,Y) of all affine functions φ: I → Y into Lip₂(I,Z). We prove that if N is...

On Erb's uncertainty principle

Hubert Klaja (2016)

Studia Mathematica

We improve a result of Erb, concerning an uncertainty principle for orthogonal polynomials. The proof uses numerical range and a decomposition of some multiplication operators as a difference of orthogonal projections.

On essential norm of the Neumann operator

Dagmar Medková (1992)

Mathematica Bohemica

One of the classical methods of solving the Dirichlet problem and the Neumann problem in 𝐑 m is the method of integral equations. If we wish to use the Fredholm-Radon theory to solve the problem, it is useful to estimate the essential norm of the Neumann operator with respect to a norm on the space of continuous functions on the boundary of the domain investigated, where this norm is equivalent to the maximum norm. It is shown in the paper that under a deformation of the domain investigated by a diffeomorphism,...

On isomorphisms of some Köthe function F-spaces

Violetta Kholomenyuk, Volodymyr Mykhaylyuk, Mikhail Popov (2011)

Open Mathematics

We prove that if Köthe F-spaces X and Y on finite atomless measure spaces (ΩX; ΣX, µX) and (ΩY; ΣY; µY), respectively, with absolute continuous norms are isomorphic and have the property lim μ ( A ) 0 μ ( A ) - 1 1 A = 0 (for µ = µX and µ = µY, respectively) then the measure spaces (ΩX; ΣX; µX) and (ΩY; ΣY; µY) are isomorphic, up to some positive multiples. This theorem extends a result of A. Plichko and M. Popov concerning isomorphic classification of L p(µ)-spaces for 0 < p < 1. We also provide a new class of F-spaces...

On Musielak-Orlicz spaces isometric to L2 or L∞.

Anna Kaminska (1997)

Collectanea Mathematica

It is proved that a Musielak-Orlicz space LΦ of real valued functions which is isometric to a Hilbert space coincides with L2 up to a weight, that is Φ(u,t) = c(t) u2. Moreover it is shown that any surjective isometry between LΦ and L∞ is a weighted composition operator and a criterion for LΦ to be isometric to L∞ is presented.

Currently displaying 301 – 320 of 659