The search session has expired. Please query the service again.
The commutator of a singular integral operator with homogeneous kernel Ω(x)/|x|ⁿ is studied, where Ω is homogeneous of degree zero and has mean value zero on the unit sphere. It is proved that is a sufficient condition for the kth order commutator to be bounded on for all 1 < p < ∞. The corresponding maximal operator is also considered.
It is proved that if is a Jordan operator on a Hilbert space with the Jordan decomposition , where is normal and is compact and quasinilpotent, i = 1,2, and the Lie algebra generated by J₁,J₂ is an Engel Lie algebra, then the Banach algebra generated by J₁,J₂ is an Engel algebra. Some results for normal operators and Jordan operators on Banach spaces are given.
It is proved that every locally inner derivation on a symmetric norm ideal of operators is an inner derivation.
Currently displaying 1 –
3 of
3