The search session has expired. Please query the service again.
               
            
            
                      
                           
        
      
        
	
	
        
    
		
			
			
                                             
                
                    
                    
                
                
    			
    				
    					
                                        Displaying 81 – 
                                        100 of 
                                        233
                        
      
    				
                    
    	            
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
Ce travail a pour objet l’étude d’une méthode de « discrétisation » du Laplacien dans le problème de Poisson à deux dimensions sur un rectangle, avec des conditions aux limites de Dirichlet. Nous approchons l’opérateur Laplacien par une matrice de Toeplitz à blocs, eux-mêmes de Toeplitz, et nous établissons une formule donnant les blocs de l’inverse de cette matrice. Nous donnons ensuite un développement asymptotique de la trace de la matrice inverse, et du déterminant de la matrice de Toeplitz....
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
In analogy to the classical isomorphism between ((ℝⁿ),  and  (resp.  and ), we show that a large class of moderate linear mappings acting between the space  of compactly supported generalized functions and (ℝⁿ) of generalized functions (resp. the space  of Colombeau rapidly decreasing generalized functions and the space  of temperate ones) admits generalized integral representations, with kernels belonging to specific regular subspaces of  (resp. ). The main novelty is to use accelerated...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We show in two dimensions that if , , p = 4/(2+η), a ≥ b ≥ 1̅ = (1,1), , then  if η + α₁ + α₂ < 2, , j = 1,2. Our methods apply in all dimensions and also for more general kernels.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We show that if , then the logarithmically weighted Bergman space  is mapped by the Libera operator  into the space , while if  and , then the Hilbert matrix operator  maps  into .We show that the Libera operator  maps the logarithmically weighted Bloch space , , into itself, while  maps  into .In Pavlović’s paper (2016) it is shown that  maps the logarithmically weighted Hardy-Bloch space , , into . We show that this result is sharp. We also show that  maps , , into  and...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
In the setting of a metric measure space (X, d, μ) with an n-dimensional Radon measure μ, we give a necessary and sufficient condition for the boundedness of Calderón-Zygmund operators associated to the measure μ on Lipschitz spaces on the support of μ. Also, for the Euclidean space Rd with an arbitrary Radon measure μ, we give several characterizations of Lipschitz spaces on the support of μ, Lip(α,μ), in terms of mean oscillations involving μ. This allows us to view the "regular" BMO space of...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We have shown in [1] that domains of integral operators are not in general locally convex. In the case when such a domain is locally convex we show that it is an inductive limit of L¹-spaces with weights.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
This paper is concerned with mathematical and numerical analysis of the system of radiative integral transfer equations. The existence and uniqueness of solution to the integral system is proved by establishing the boundedness of the radiative integral operators and proving the invertibility of the operator matrix associated with the system. A collocation-boundary element method is developed to discretize the differential-integral system. For the non-convex geometries, an element-subdivision algorithm...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
In a series of papers beginning in the late 1990s, Michael Lacey and Christoph Thiele have resolved a longstanding conjecture of Calderón regarding certain very singular integral operators, given a transparent proof of Carleson’s theorem on the almost everywhere convergence of Fourier series, and initiated a slew of further developments. The hallmarks of these problems are multilinearity as opposed to mere linearity, and especially modulation symmetry. By modulation is meant multiplication by characters...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
Let 1 < p < ∞, q = p/(p-1) and for  define , x > 0. Moser’s Inequality states that there is a constant  such that  where  is the unit ball of . Moreover, the value a = 1 is sharp. We observe that  f where the integral operator  has a simple kernel K. We consider the question of for what kernels K(t,x), 0 ≤ t, x < ∞, this result can be extended, and proceed to discuss this when K is non-negative and homogeneous of degree -1. A sufficient condition on K is found for the analogue...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We prove that an almost diagonal condition on the (m + 1)-linear tensor associated to an m-linear operator implies boundedness of the operator on products of classical function spaces. We then provide applications to the study of certain singular integral operators.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We consider a Hardy-type inequality with Oinarov's kernel in weighted Lebesgue spaces. We give new equivalent conditions for satisfying the inequality, and provide lower and upper estimates for its best constant. The findings are crucial in the study of oscillation and non-oscillation properties of differential equation solutions, as well as spectral properties.
    			                    
    			                 
    		                
    		                
    		            
    			    			
    			 
 
    			
    				Currently displaying 81 – 
                                        100 of 
                                        233