Displaying 361 – 380 of 434

Showing per page

Sufficient conditions for infinite-horizon calculus of variations problems

Joël Blot, Naïla Hayek (2010)

ESAIM: Control, Optimisation and Calculus of Variations

After a brief survey of the literature about sufficient conditions, we give different sufficient conditions of optimality for infinite-horizon calculus of variations problems in the general (non concave) case. Some sufficient conditions are obtained by extending to the infinite-horizon setting the techniques of extremal fields. Others are obtained in a special qcase of reduction to finite horizon. The last result uses auxiliary functions. We treat five notions of optimality. Our problems are essentially motivated...

Sufficient Conditions of Optimality for Control Pproblem Governed by Variational Inequalities

Ndoutoume, James (1995)

Serdica Mathematical Journal

* This work was completed while the author was visiting the University of Limoges. Support from the laboratoire “Analyse non-linéaire et Optimisation” is gratefully acknowledged.The author recently introduced a regularity assumption for derivatives of set-valued mappings, in order to obtain first order necessary conditions of optimality, in some generalized sense, for nondifferentiable control problems governed by variational inequalities. It was noticed that this regularity assumption can be...

Sufficient optimality conditions and semi-smooth newton methods for optimal control of stationary variational inequalities

Karl Kunisch, Daniel Wachsmuth (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper sufficient second order optimality conditions for optimal control problems subject to stationary variational inequalities of obstacle type are derived. Since optimality conditions for such problems always involve measures as Lagrange multipliers, which impede the use of efficient Newton type methods, a family of regularized problems is introduced. Second order sufficient optimality conditions are derived for the regularized problems...

Sufficient optimality conditions and semi-smooth newton methods for optimal control of stationary variational inequalities

Karl Kunisch, Daniel Wachsmuth (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper sufficient second order optimality conditions for optimal control problems subject to stationary variational inequalities of obstacle type are derived. Since optimality conditions for such problems always involve measures as Lagrange multipliers, which impede the use of efficient Newton type methods, a family of regularized problems is introduced. Second order sufficient optimality conditions are derived for the regularized problems...

Sufficient optimality conditions for multivariable control problems

Andrzej Nowakowski (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We study optimal control problems for partial differential equations (focusing on the multidimensional differential equation) with control functions in the Dirichlet boundary conditions under pointwise control (and we admit state - by assuming weak hypotheses) constraints.

Sul problema di contatto tra piastre

Aldo Maceri (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si studia il problema di contatto tra due piastre sottili linearmente elastiche, incastrate al bordo, poste inizialmente a distanza δ e trasversalmente caricate. Si fa l'ipotesi che il contatto tra le due piastre, a deformazione avvenuta, sia privo di attrito. Il problema dell'equilibrio elastico è formulato per via variazionale in termini di lavori virtuali o, equivalentemente, di minimo del funzionale dell'energia. Il quadro analitico di riferimento è quello della teoria delle disequazioni variazionali...

Superconvergence analysis and a posteriori error estimation of a Finite Element Method for an optimal control problem governed by integral equations

Ningning Yan (2009)

Applications of Mathematics

In this paper, we discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement.

Currently displaying 361 – 380 of 434