The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 421 –
440 of
687
In this paper we discuss inverse problems in infiltration. We propose an efficient method for identification of model parameters, e.g., soil parameters for unsaturated porous media. Our concept is strongly based on the finite speed of propagation of the wetness front during the infiltration into a dry region. We determine the unknown parameters from the corresponding ODE system arising from the original porous media equation. We use the automatic differentiation implemented in the ODE solver LSODA....
This paper deals with a multiobjective control problem for nonlinear discrete time systems. The problem consists of finding a control strategy which minimizes a number of performance indexes subject to state and control constraints. A solution to this problem through the Receding Horizon approach is proposed. Under standard assumptions, it is shown that the resulting control law guarantees closed-loop stability. The proposed method is also used to provide a robustly stabilizing solution to the problem...
We consider the Laplace operator in a planar waveguide, i.e. an infinite two-dimensional straight strip of constant width, with Robin boundary conditions. We study the essential spectrum of the corresponding Laplacian when the boundary coupling function has a limit at infinity. Furthermore, we derive sufficient conditions for the existence of discrete spectrum.
We investigate the stability of Bravais lattices and their Cauchy–Born approximations under periodic perturbations. We formulate a general interaction law and derive its Cauchy–Born continuum limit. We then analyze the atomistic and Cauchy–Born stability regions, that is, the sets of all matrices that describe a stable Bravais lattice in the atomistic and Cauchy–Born models respectively. Motivated by recent results in one dimension on the stability of atomistic/continuum coupling methods, we analyze...
We investigate the stability of Bravais lattices and their
Cauchy–Born approximations under periodic perturbations. We
formulate a general interaction law and derive its Cauchy–Born
continuum limit. We then analyze the atomistic and Cauchy–Born
stability regions, that is, the sets of all matrices that describe a
stable Bravais lattice in the atomistic and Cauchy–Born
models respectively. Motivated by recent results in one dimension on the stability of
atomistic/continuum coupling methods,...
Let be a smooth connected complete manifold of dimension , and be a smooth nonholonomic distribution of rank on . We prove that if there exists a smooth Riemannian metric on1for which no nontrivial singular path is minimizing, then there exists a smooth repulsive stabilizing section of on . Moreover, in dimension three, the assumption of the absence of singular minimizing horizontal paths can be dropped in the Martinet case. The proofs are based on the study, using specific results of...
Vengono trattati due problemi di Stefan con la specificazione dell'energia. Dapprima si fornisce una formulazione debole di un problema unidimensionale ad una fase studiato in [4]: si dimostra un risultato di esistenza. In seguito si considera un problema di Stefan pluridimensionale e multifase in cui viene assegnata l'energia totale del sistema ad ogni istante; si mostra l’esistenza e l’unicità della soluzione per due formulazioni provando inoltre l’equivalenza fra queste.
A way of geometrically representing symmetric 2 × 2-gradients is proposed, and a general theorem characterizing sets of gradients is proved. We believe this perspective may help in understanding the structure of gradients and visualizing it. Several non-trivial examples are discussed.
Currently displaying 421 –
440 of
687