Brève communication. Performance du gradient réduit généralisé avec une méthode quasi newtonienne pour la programmation non linéaire
In the nonconvex case, solutions of rate-independent systems may develop jumps as a function of time. To model such jumps, we adopt the philosophy that rate-independence should be considered as limit of systems with smaller and smaller viscosity. For the finite-dimensional case we study the vanishing-viscosity limit of doubly nonlinear equations given in terms of a differentiable energy functional and a dissipation potential that is a viscous regularization of a given rate-independent dissipation...
In the nonconvex case, solutions of rate-independent systems may develop jumps as a function of time. To model such jumps, we adopt the philosophy that rate-independence should be considered as limit of systems with smaller and smaller viscosity. For the finite-dimensional case we study the vanishing-viscosity limit of doubly nonlinear equations given in terms of a differentiable energy functional and a dissipation potential that is a viscous regularization...
We prove the partial -regolarity up to the free boundary of the -harmonic maps which minimize the -energy .
The story of the theory of Caccioppoli sets is presented, together with some information about Renato Caccioppoli’s life. The fundamental contributions of Ennio De Giorgi to the theory of Caccioppoli sets are sketched. A list of applications of Cacciopoli sets to the calculus of variations is finally included.
MSC 2010: 49K05, 26A33We give a proper fractional extension of the classical calculus of variations. Necessary optimality conditions of Euler-Lagrange type for variational problems containing both classical and fractional derivatives are proved. The fundamental problem of the calculus of variations with mixed integer and fractional order derivatives as well as isoperimetric problems are considered.
We study integrals of the form , where , is continuous and is a -form. We introduce the appropriate notions of convexity, namely ext. one convexity, ext. quasiconvexity and ext. polyconvexity. We study their relations, give several examples and counterexamples. We finally conclude with an application to a minimization problem.