The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 741 – 760 of 4417

Showing per page

BV solutions and viscosity approximations of rate-independent systems

Alexander Mielke, Riccarda Rossi, Giuseppe Savaré (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In the nonconvex case, solutions of rate-independent systems may develop jumps as a function of time. To model such jumps, we adopt the philosophy that rate-independence should be considered as limit of systems with smaller and smaller viscosity. For the finite-dimensional case we study the vanishing-viscosity limit of doubly nonlinear equations given in terms of a differentiable energy functional and a dissipation potential that is a viscous regularization of a given rate-independent dissipation...

BV solutions and viscosity approximations of rate-independent systems∗

Alexander Mielke, Riccarda Rossi, Giuseppe Savaré (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In the nonconvex case, solutions of rate-independent systems may develop jumps as a function of time. To model such jumps, we adopt the philosophy that rate-independence should be considered as limit of systems with smaller and smaller viscosity. For the finite-dimensional case we study the vanishing-viscosity limit of doubly nonlinear equations given in terms of a differentiable energy functional and a dissipation potential that is a viscous regularization...

Caccioppoli sets

Mario Miranda (2003)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The story of the theory of Caccioppoli sets is presented, together with some information about Renato Caccioppoli’s life. The fundamental contributions of Ennio De Giorgi to the theory of Caccioppoli sets are sketched. A list of applications of Cacciopoli sets to the calculus of variations is finally included.

Calculus of Variations with Classical and Fractional Derivatives

Odzijewicz, Tatiana, Torres, Delfim F. M. (2012)

Mathematica Balkanica New Series

MSC 2010: 49K05, 26A33We give a proper fractional extension of the classical calculus of variations. Necessary optimality conditions of Euler-Lagrange type for variational problems containing both classical and fractional derivatives are proved. The fundamental problem of the calculus of variations with mixed integer and fractional order derivatives as well as isoperimetric problems are considered.

Calculus of variations with differential forms

Saugata Bandyopadhyay, Bernard Dacorogna, Swarnendu Sil (2015)

Journal of the European Mathematical Society

We study integrals of the form Ω f d ω , where 1 k n , f : Λ k is continuous and ω is a k - 1 -form. We introduce the appropriate notions of convexity, namely ext. one convexity, ext. quasiconvexity and ext. polyconvexity. We study their relations, give several examples and counterexamples. We finally conclude with an application to a minimization problem.

Currently displaying 741 – 760 of 4417