Displaying 621 – 640 of 763

Showing per page

Courbure discrète ponctuelle

Vincent Borrelli (2006/2007)

Séminaire de théorie spectrale et géométrie

Soient S une surface de l’espace euclidien 𝔼 3 et M un ensemble de triangles euclidiens formant une approximation linéaire par morceaux de S autour d’un point P S , la courbure discrète ponctuelle K d ( P ) au sommet P de M est, par définition, le quotient du défaut angulaire par la somme des aires des triangles ayant P comme sommet. Un problème naturel est d’estimer la différence entre cette courbure discrète K d ( S ) et la courbure lisse K ( P ) de S en P . Nous présentons dans cet article des résultats obtenus dans [4], [5],...

Courbure et sous-ensembles de courbes rectifiables dans le groupe de Heisenberg

Fausto Ferrari, Bruno Franchi, Hervé Pajot (2005/2006)

Séminaire Équations aux dérivées partielles

Nous présentons une condition suffisante pour qu’un compact dans le groupe de Heisenberg (muni de sa structure de Carnot-Carathéodory) soit contenu dans une courbe rectifiable. Cette condition est aussi nécessaire dans le cas de courbes régulières (en particulier, des géodésiques) et elle est inspirée du lemme géométrique faible du à Peter Jones dans le cas euclidien. Cette note repose sur l’exposé fait par le troisième auteur (au Séminaire X-EDP) et décrit les principaux résultats de l’article...

Courbures intrinsèques dans les catégories analytico-géométriques

Andreas Bernig, Ludwig Bröcker (2003)

Annales de l’institut Fourier

Deux types de courbures sont associés à un sous-ensemble compact et définissable d'une variété riemannienne analytique réelle. Si la variété est de courbure constante, il y a des relations linéaires entre ces mesures. Comme application, nous démontrons une formule cinématique, définissons des densités locales, et nous étudions les volumes des simplexes réguliers.

Currently displaying 621 – 640 of 763